To solve the problem of finishing the twist blade surface of an impeller, the five-axis numerically controlled electrochemical contour evolution grinding (NC-ECCEG) is studied. Over-cutting errors of NC-ECCEG of the...To solve the problem of finishing the twist blade surface of an impeller, the five-axis numerically controlled electrochemical contour evolution grinding (NC-ECCEG) is studied. Over-cutting errors of NC-ECCEG of the twist blade surface generated by parallel lines are analyzed. The formula for calculating the over-cutting error is deduced. The method for eliminating the over-cutting error is used in the conical grinding wheel and the combined five-axis linkage NC-ECCEG system. The structure and the movement of the NC-ECCEG machine tool,the combined multi-axis NC system and its linkage control technology are introduced. Further, the mathematical model of the NC-ECCEG unparallel-ruled surface is established. An auto-programming system on five-axis NGECCEG is developed to grind the impeller. The machining efficiency of NC-ECCEG increases more than 12 times than that of manual polishing operations.展开更多
文摘To solve the problem of finishing the twist blade surface of an impeller, the five-axis numerically controlled electrochemical contour evolution grinding (NC-ECCEG) is studied. Over-cutting errors of NC-ECCEG of the twist blade surface generated by parallel lines are analyzed. The formula for calculating the over-cutting error is deduced. The method for eliminating the over-cutting error is used in the conical grinding wheel and the combined five-axis linkage NC-ECCEG system. The structure and the movement of the NC-ECCEG machine tool,the combined multi-axis NC system and its linkage control technology are introduced. Further, the mathematical model of the NC-ECCEG unparallel-ruled surface is established. An auto-programming system on five-axis NGECCEG is developed to grind the impeller. The machining efficiency of NC-ECCEG increases more than 12 times than that of manual polishing operations.