清洗消毒工艺是乳制品生产的关键控制点之一。利用电解活化技术(Electro Chemical Activation,ECA)对原位清洗(Clean in Place,CIP)相关工艺参数进行调整改进,形成一套新的用于乳制品生产车间的清洗消毒方法。结果表明,与传统CIP相比,...清洗消毒工艺是乳制品生产的关键控制点之一。利用电解活化技术(Electro Chemical Activation,ECA)对原位清洗(Clean in Place,CIP)相关工艺参数进行调整改进,形成一套新的用于乳制品生产车间的清洗消毒方法。结果表明,与传统CIP相比,新工艺在确保对罐体、管路、瓶盖等清洗消毒良好效果基础上,节约了清洗时间,降低了能源及化学品消耗。该工艺不仅节约了生产成本,还减少废气、废液的排放,对实际生产和环境保护具有重要意义。展开更多
Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the ...Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.展开更多
An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample ...An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.展开更多
The effects of contents of AlF3 and Al2O3, and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)- AlF3-Al2O3 were studied by continuously varying cell censtant (CVCC) technique. The results show that t...The effects of contents of AlF3 and Al2O3, and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)- AlF3-Al2O3 were studied by continuously varying cell censtant (CVCC) technique. The results show that the conductivities of melts increase with the increase of temperature, but by different extents. Every increasing 10 ℃ results in an increase of 1.85 × 10^-2, 1.86× 10^-2, 1.89 × 10^-2 and 2.20 × 10^-2 S/cm in conductivity for the (Na3AlF6-40%K3AlF6)-AlF3 melts containing 0%, 20%, 24%, and 30% AlF3, respectively. An increase of every 10 ℃ in temperature results an increase about 1.89× 10^-2, 1.94 × 10^-2, 1.95 × 10^-2, 1.99× 10^-2 and 2.10× 10^-2 S/cm for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts containing 0%, 1%, 2%, 3% and 4% Al2O3, respectively. The activation energy of conductance was calculated based on Arrhenius equation. Every increasing 1% of AlF3 results in a decrease of 0.019 and 0.020 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3 melts at 900 and 1 000 ℃, respectively. Every increase of 1% Al2O3 results in a decrease of 0.07 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts. The activation energy of conductance increases with the increase in content of AlF3 and Al2O3.展开更多
The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional...The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.展开更多
A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC ...A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.展开更多
In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on ...In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.展开更多
Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) o...Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) ordered mesoporous Co1-xFexP(x=0, 0.25, 0.5, 0.75) electrocatalyst.Benefiting from 3D ordered mesoporous pore channels and composition optimization, the Co0.75Fe0.25 P exhibits excellent electrocatalytic activities with low overpotentials of 270 and 209 mV at 10 mA cm^-2 for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER), respectively, in the alkaline electrolyte along with a durable electrochemical stability. In addition, as both the cathode and anode, the Co0.75Fe0.25P also exhibits superior electrolysis water splitting performance with only an applied voltage of 1.63 V to attain a current density of 10 m A cm^-2 without obvious decay for 18 h,indicating that the Co0.75Fe0.25P is an efficient electrocatalyst for overall water splitting.展开更多
Tandem water electrolysis for the transformation of universal feedstock to value-added chemicals integrated with hydrogen generation and in situ utilization is a promising approach to address the economic challenges o...Tandem water electrolysis for the transformation of universal feedstock to value-added chemicals integrated with hydrogen generation and in situ utilization is a promising approach to address the economic challenges of electrochemical hydrogen evolution and storage.Herein,we present the controllable electrocatalytic deuteration of halides using inexpensive and reusable heavy water(D2 O)as a D-source for the preparation of valuable D-labelled chemicals and pharmaceuticals under mild conditions.This electrochemical deuteration method with high efficiency and selectivity furnishes a series of D-labelled chemicals and pharmaceuticals in high yields with excellent D-incorporation.The reaction efficiency and selectivity,that is,the precise substitution of deuterium atoms at different halogen positions,can be tuned by varying the applied voltages.The results show the great potential of green and economical electrocatalytic methods for producing value-added fine chemicals in addition to hydrogen evolution.展开更多
文摘清洗消毒工艺是乳制品生产的关键控制点之一。利用电解活化技术(Electro Chemical Activation,ECA)对原位清洗(Clean in Place,CIP)相关工艺参数进行调整改进,形成一套新的用于乳制品生产车间的清洗消毒方法。结果表明,与传统CIP相比,新工艺在确保对罐体、管路、瓶盖等清洗消毒良好效果基础上,节约了清洗时间,降低了能源及化学品消耗。该工艺不仅节约了生产成本,还减少废气、废液的排放,对实际生产和环境保护具有重要意义。
基金Project supported by the Postdoctoral Science Foundation of Central South UniversityProject(2014M552151)supported by the China Postdoctoral Science FoundationProject(51101171)supported by the National Natural Science Foundation of China
文摘Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.
基金Projects (51204209,51274240) supported by the National Natural Science Foundation of China
文摘An efficient synthesis of carbon nanofibers by pyrolysis of as-prepared polypyrrole nanowires was reported. Under the subsequent KOH activation, a significant morphology variation was detected and the obtained sample took on a ribbon-like structure. The morphology and structure of the carbon nanofibers and carbon nanoribbons were characterized. When the as-prepared one-dimensional carbon nanostructures were used as anode materials in lithium ion batteries, both of them exhibited superior cyclical stability and good rate properties. After 50 cycles, the reversible capacity of carbon nanofibers electrode maintained 530 mA·h/g. Concerning carbon nanoribbons, the reversible capacity is always larger than 850 mA·h/g and the reversible capacity retention after 23 cycles is 86%.
基金Project(2005CB623703) supported by the Major State Basic Research and Development Program of ChinaProject(2008AA030503) supported by the National High-Tech Research and Development Program of ChinaProject(GUIKEJI 0639032) supported by Applied Basic Research in Guangxi Province, China
文摘The effects of contents of AlF3 and Al2O3, and temperature on electrical conductivity of (Na3AlF6-40%K3AlF6)- AlF3-Al2O3 were studied by continuously varying cell censtant (CVCC) technique. The results show that the conductivities of melts increase with the increase of temperature, but by different extents. Every increasing 10 ℃ results in an increase of 1.85 × 10^-2, 1.86× 10^-2, 1.89 × 10^-2 and 2.20 × 10^-2 S/cm in conductivity for the (Na3AlF6-40%K3AlF6)-AlF3 melts containing 0%, 20%, 24%, and 30% AlF3, respectively. An increase of every 10 ℃ in temperature results an increase about 1.89× 10^-2, 1.94 × 10^-2, 1.95 × 10^-2, 1.99× 10^-2 and 2.10× 10^-2 S/cm for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts containing 0%, 1%, 2%, 3% and 4% Al2O3, respectively. The activation energy of conductance was calculated based on Arrhenius equation. Every increasing 1% of AlF3 results in a decrease of 0.019 and 0.020 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3 melts at 900 and 1 000 ℃, respectively. Every increase of 1% Al2O3 results in a decrease of 0.07 S/cm in conductivity for (Na3AlF6-40%K3AlF6)-AlF3-Al2O3 melts. The activation energy of conductance increases with the increase in content of AlF3 and Al2O3.
文摘The purpose of this paper was to investigate the possibility of treating C. I. Reactive Blue 19 wastewater by electrochemical oxidation via electrogenerated active chlorine, using metallic oxide coatings (dimensional stable anode, DSA) as anode. The electrolysis for the simulated wastewater was conducted at a constant current. Absorbances at 592 nm and 255 nm were measured to follow the decolorization of the dye and the degradatin of its aromatic ring. After 4 h of electrolysis under the experimental conditions: current density of 15 A·m^-2, 0.2 mol·L^-1 NaCl, 0.1 mol·L^-1 Na2SO4, 0.1 mmol·L^-1 dye, initial pH=6.4 and T=30℃, 100% decolorization of the dye and about 45% degradation of its aromatic ring were achieved, while no obvious change of total organic carbon was observed. The experimental results suggest that the decolorization of the dye and degradation of its aromatic ring were directly affected by current density, temperature, concentrations of the dye and sodium chloride, while slightly affected by initial pH and sodium sulfate concentration; the decolorization of the dye and degradation of its aromatic ring followed pseudo-first-order kinetics; and indirect electrooxidation, using electrogenerated active chlorine, predominated in the electrochemical oxidation.
文摘A novel fluidized electrochemical reactor that integrated advanced electrochemical oxidation with activated carbon (AC) fluidization in a single cell was developed to model pollutant p-nitrophenol (PNP) abatement. AC fluidization could enhance COD removal by 22%-30%. In such a combined process, synergetic effects on PNP and COD removal was found, with their removal rate being enhanced by 137.8% and 97.8%, respectively. AC could be electrochemically regenerated and reused, indicating the combined process would be promising for treatment of biorefractory organic pollutants.
基金financial support from the National Natural Science Foundation of China (No. 51975533)National Safety Academic Fund, China (No. U2130122)Public Projects of Zhejiang Province, China (Nos. LGJ22E050002, LGJ20E050002)
文摘In order to improve the bioactivity of 316L stainless steel,a titanium layer was prepared on the surface of 316L by laser cladding(LC),followed by plasma electrolytic oxidation(PEO)to form a porous ceramic coating on titanium layer.The morphologies,microstructure and compositions of the coated samples were characterized by 3D surface profiler,SEM,EDS,XRD and XPS.The corrosion resistance and bioactivity of the coatings were evaluated by potentiodynamic polarization and immersion test in simulated body fluid(SBF),respectively.The results showed that the porous ceramic coating mainly consisted of anatase and rutile,and highly crystalline HA was also detected.The main elements of the PEO coating are Ca,P,Ti and O.The LC+PEO composite bio-coating has more excellent corrosion resistance than the 316L substrate in simulated body fluid.Furthermore,the composite coating could effectively improve the bioactivity of 316L stainless steel.
基金supported by the National Natural Science Foundation of China (51571072 and 51871078)Heilongjiang Science Foundation (E2018028)
文摘Developing low-cost and earth-abundant electrocatalysts with high performance for electrochemical water splitting is a challenging issue. Herein, we report a facile and effective way to fabricate three-dimension(3D) ordered mesoporous Co1-xFexP(x=0, 0.25, 0.5, 0.75) electrocatalyst.Benefiting from 3D ordered mesoporous pore channels and composition optimization, the Co0.75Fe0.25 P exhibits excellent electrocatalytic activities with low overpotentials of 270 and 209 mV at 10 mA cm^-2 for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER), respectively, in the alkaline electrolyte along with a durable electrochemical stability. In addition, as both the cathode and anode, the Co0.75Fe0.25P also exhibits superior electrolysis water splitting performance with only an applied voltage of 1.63 V to attain a current density of 10 m A cm^-2 without obvious decay for 18 h,indicating that the Co0.75Fe0.25P is an efficient electrocatalyst for overall water splitting.
基金supported by the National Natural Science Foundation of China(21972094,21902105)the National Postdoctoral Program for Innovative Talents(BX20180203)+4 种基金China Postdoctoral Science Foundation(2018M643176)Guangdong Special Support ProgramPengcheng Scholar programShenzhen Peacock Plan(KQJSCX20170727100802505 and KQTD2016053112042971)Foundation for Distinguished Young Talents in Higher Education of Guangdong(2018KQNCX221)。
文摘Tandem water electrolysis for the transformation of universal feedstock to value-added chemicals integrated with hydrogen generation and in situ utilization is a promising approach to address the economic challenges of electrochemical hydrogen evolution and storage.Herein,we present the controllable electrocatalytic deuteration of halides using inexpensive and reusable heavy water(D2 O)as a D-source for the preparation of valuable D-labelled chemicals and pharmaceuticals under mild conditions.This electrochemical deuteration method with high efficiency and selectivity furnishes a series of D-labelled chemicals and pharmaceuticals in high yields with excellent D-incorporation.The reaction efficiency and selectivity,that is,the precise substitution of deuterium atoms at different halogen positions,can be tuned by varying the applied voltages.The results show the great potential of green and economical electrocatalytic methods for producing value-added fine chemicals in addition to hydrogen evolution.