期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
磁场协同效应对铜电解液蒸发结晶的影响 被引量:3
1
作者 关甫江 姚夏妍 +5 位作者 李学国 杨富荣 牛永胜 鲁兴武 程亮 李俞良 《中国有色冶金》 CAS 北大核心 2021年第5期17-23,共7页
如何保证电解液中Cu^(2+)浓度处于生产要求范围一直是铜电解精炼工艺研究的热点和难点,铜电解液的蒸发结晶过程是保证Cu^(2+)浓度的一个关键因素。本文对强磁场循环系统下电解液的蒸发结晶和冷却过程对结晶物质量的影响进行了试验,分析... 如何保证电解液中Cu^(2+)浓度处于生产要求范围一直是铜电解精炼工艺研究的热点和难点,铜电解液的蒸发结晶过程是保证Cu^(2+)浓度的一个关键因素。本文对强磁场循环系统下电解液的蒸发结晶和冷却过程对结晶物质量的影响进行了试验,分析强磁场作用下磁化时间和流速与铜电解液发生共振的内在机理,得出了以下结论:强磁场协同作用于铜电解液时,恒定磁场强度与铜电解液中分子的转动能态会发生共振,并达到极限值,促进电解液的蒸发结晶和冷却;流速越小、磁化时间越长越有利于电解液蒸发结晶和冷却;蒸发结晶的最佳参数为磁场强度3 T、流速0.3 m/s、磁化时间1.5 h,在此条件下,电解液的蒸发率增加14%;冷却的最佳参数为磁场强度3 T、流速0.3 m/s、磁化时间1.5 h,在此条件下,电解液冷却过程的蒸发率增加5%,结晶物质量增加19.73%。磁场强化铜电解液蒸发结晶过程可显著提高电解液净化效率,有助于减轻铜电解过程的浓差极化,促使铜电解液铜酸比例处于动态平衡状态,从而提高阴极铜质量,降低铜电解过程的能耗。 展开更多
关键词 电解 电解液Cu^(2+)浓度 磁场协同效应 蒸发结晶 冷却 结晶物质量 电解液净化效率 浓差极化
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部