To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2,...To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2, mass ratio), were prepared to substitute for industrial electrolyte(EC/EMC/DMC). Then, 18650-type Li Mn2O4-graphite cells(nominal capacity of 1150 mA ·h) were assembled and studied. Results show that the cells containing three types of electrolyte are able to undertake 5C discharging current with above 93% capacity retention at-20 °C. Electrochemical impedance spectra show that the discharge capacity fading of Li-ion cells at low temperature is mainly ascribed to the charge transfer resistance increasing with temperature decreasing. In comparison, the cells containing electrolyte of 1.0 mol/L LiPF6 in EC/EMC/EA(1:1:2, mass ratio) have the highest capacity retention of 90% at-40 °C and 44.41% at-60 °C, due to its lowest charge-transfer resistance.展开更多
Electrostatic separation is one of the mineral processing methods based on mineral conductivity.This method has some significant problems such as being sensitive to humidity,high middling product,and impurity of non-c...Electrostatic separation is one of the mineral processing methods based on mineral conductivity.This method has some significant problems such as being sensitive to humidity,high middling product,and impurity of non-conductive minerals.In this study,a new pretreatment method was proposed for the separation of zircon from quartz before electrostatic separation to solve these disadvantages.In this regard,two stages of pretreatment were applied which involved using collector of sodium dodecyl sulfate(SDS)for adjusting wettability of the zircon surface and spraying electrolyte aqueous solution to increase conductivity of the quartz surface.The effects of important parameters including pH,collector concentration,conditioning time,and concentration and type of electrolyte on the process efficiency were evaluated.The results showed that the optimal conditions of high-tension electrical separation were pH of 4,SDS concentration of 1×10-4 mol/L,conditioning time of 4 min and NaCl as an electrolyte with concentration of 4.27 mol/L.Separation efficiency of 95.12% was achieved in optimum conditions.This pretreatment method can be successfully used before high-tension electrical separation to separate the conductive or non-conductive minerals with various compositions.展开更多
The effect of dysprosium and strontium on the total ionic conductivity of ceria in the system Ce1-xDyx-ySryO2-δ was studied. In this system, few compositions were prepared with x=0.15, y=0.015, 0.03 and 0.045 by modi...The effect of dysprosium and strontium on the total ionic conductivity of ceria in the system Ce1-xDyx-ySryO2-δ was studied. In this system, few compositions were prepared with x=0.15, y=0.015, 0.03 and 0.045 by modified sol-gel process using maltose and pectin as organic precursors. Rietveld refinement of XRD patterns confirms the cubic structure with space group Fm3m . SEM images show relatively uniform grains with clean and distinct grain boundaries. Four probe AC impedance measurements were carried out to evaluate the total ionic conductivity in the temperature range of 150-500 ℃ and frequency range of 40 Hz-1 MHz. The composition Ce0.85Dy0.12Sr0.03O2-δshows higher electrical conductivity than single-doped ceria samples.展开更多
This work provides a method to explore the transport property of the electrolyte aqueous solutions with one or two ionic liquids, especially focus on their electrical conductivity. The conductivities were measured for...This work provides a method to explore the transport property of the electrolyte aqueous solutions with one or two ionic liquids, especially focus on their electrical conductivity. The conductivities were measured for the ternary systems Na Cl–[C6mim][Cl](1-hexyl-3-methylimidazolium chloride)–H2O, [C6mim][BF4]–[C6mim][Cl]–H2O,Na NO3–[C6mim][BF4](1-hexyl-3-methylimidazolium tetrafluoroborate)–H2O, and [C4mim][BF4](1-butyl-3-methylimidazolium tetrafluoroborate)–[C6mim][BF4]–H2O, and their binary subsystems NaN O3–H2O, NaC l–H2O,[C6mim][BF4]–H2O, [C6mim][Cl]–H2O, and [C4mim][BF4]–H2O, respectively. The conductivities of the ternary systems were also determined using generalized Young's rule and semi-ideal solution theory in terms of the data of their binary solutions. The comparison showed that the two simple equations provide good predictions for conductivity of mixed electrolyte solutions and the mixed ionic liquid solutions based on the conductivity of their binary subsystems.展开更多
基金Project(2007BAE12B01)supported by the National Key Technology Research and Development Program of ChinaProject(20803095)supported by the National Natural Science Foundation of China
文摘To improve the low-temperature performances of Li-ion cells, three types of linear carboxylic ester-based electrolyte, such as EC/EMC/EA(1:1:2, mass ratio), EC/EMC/EP(1:1:2, mass ratio) and EC/EMC/EB(1:1:2, mass ratio), were prepared to substitute for industrial electrolyte(EC/EMC/DMC). Then, 18650-type Li Mn2O4-graphite cells(nominal capacity of 1150 mA ·h) were assembled and studied. Results show that the cells containing three types of electrolyte are able to undertake 5C discharging current with above 93% capacity retention at-20 °C. Electrochemical impedance spectra show that the discharge capacity fading of Li-ion cells at low temperature is mainly ascribed to the charge transfer resistance increasing with temperature decreasing. In comparison, the cells containing electrolyte of 1.0 mol/L LiPF6 in EC/EMC/EA(1:1:2, mass ratio) have the highest capacity retention of 90% at-40 °C and 44.41% at-60 °C, due to its lowest charge-transfer resistance.
文摘Electrostatic separation is one of the mineral processing methods based on mineral conductivity.This method has some significant problems such as being sensitive to humidity,high middling product,and impurity of non-conductive minerals.In this study,a new pretreatment method was proposed for the separation of zircon from quartz before electrostatic separation to solve these disadvantages.In this regard,two stages of pretreatment were applied which involved using collector of sodium dodecyl sulfate(SDS)for adjusting wettability of the zircon surface and spraying electrolyte aqueous solution to increase conductivity of the quartz surface.The effects of important parameters including pH,collector concentration,conditioning time,and concentration and type of electrolyte on the process efficiency were evaluated.The results showed that the optimal conditions of high-tension electrical separation were pH of 4,SDS concentration of 1×10-4 mol/L,conditioning time of 4 min and NaCl as an electrolyte with concentration of 4.27 mol/L.Separation efficiency of 95.12% was achieved in optimum conditions.This pretreatment method can be successfully used before high-tension electrical separation to separate the conductive or non-conductive minerals with various compositions.
基金the UGC for providing financial assistance under DSKPDF, BSR project No. F.4-2/2006(BSR)/13-389/2010 (BSR)
文摘The effect of dysprosium and strontium on the total ionic conductivity of ceria in the system Ce1-xDyx-ySryO2-δ was studied. In this system, few compositions were prepared with x=0.15, y=0.015, 0.03 and 0.045 by modified sol-gel process using maltose and pectin as organic precursors. Rietveld refinement of XRD patterns confirms the cubic structure with space group Fm3m . SEM images show relatively uniform grains with clean and distinct grain boundaries. Four probe AC impedance measurements were carried out to evaluate the total ionic conductivity in the temperature range of 150-500 ℃ and frequency range of 40 Hz-1 MHz. The composition Ce0.85Dy0.12Sr0.03O2-δshows higher electrical conductivity than single-doped ceria samples.
基金Supported by the National Natural Science Foundation of China(51066004)the Scientific Research Project of Higher Education Institutions of Inner Mongolia(NJZY14172)the Innovation Fund of Inner Mongolia Science and Technology(2011NCL060)
文摘This work provides a method to explore the transport property of the electrolyte aqueous solutions with one or two ionic liquids, especially focus on their electrical conductivity. The conductivities were measured for the ternary systems Na Cl–[C6mim][Cl](1-hexyl-3-methylimidazolium chloride)–H2O, [C6mim][BF4]–[C6mim][Cl]–H2O,Na NO3–[C6mim][BF4](1-hexyl-3-methylimidazolium tetrafluoroborate)–H2O, and [C4mim][BF4](1-butyl-3-methylimidazolium tetrafluoroborate)–[C6mim][BF4]–H2O, and their binary subsystems NaN O3–H2O, NaC l–H2O,[C6mim][BF4]–H2O, [C6mim][Cl]–H2O, and [C4mim][BF4]–H2O, respectively. The conductivities of the ternary systems were also determined using generalized Young's rule and semi-ideal solution theory in terms of the data of their binary solutions. The comparison showed that the two simple equations provide good predictions for conductivity of mixed electrolyte solutions and the mixed ionic liquid solutions based on the conductivity of their binary subsystems.