The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from volta...The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.展开更多
Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be cha...Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient. Here, we propose an infrared-controlled programmable metasurface that can be programmed remotely. The infrared transceiver is able to switch the coding sequences stored in the FPGA controller, thus controlling the voltage on the varactors integrated in the metasurface. Experiment is performed at microwave frequencies, and the measured results verify that the scattering beams of the metasurface sample can be changed remotely by using infrared ray. The proposed infrared-controlled programmable metasurface opens up avenues for constructing a new class of remotely-tuning dynamic metasurfaces.展开更多
文摘The design and implementation of a novel ADC architecture called ring-ADC for digital voltage regulator module controllers are presented. Based on the principle of voltage-controlled oscillators' transform from voltage to frequency,the A/D conversion of ring-ADC achieves good linearity and precise calibration against process variations compared with the delay-line ADC. A differential pulse counting discriminator also helps decrease the power consumption of the ring-ADC. It is fabricated with a Chartered 0.35μm CMOS process, and the measurement results of the integral and differential nonlinearity performance are 0.92LSB and 1.2LSB respectively. The maximum gain error measured in ten sample chips is ± 3.85%. With sampling rate of 500kHz and when the voltage regulator module (VRM) works in steady state, the ring-ADC's average power consumption is 2.56mW. The ring-ADC is verified to meet the requirements for digital VRM controller application.
基金This work was supported by the National Key Research and Development Program of China(2017YFA0700201,2017YFA0700203 and 2016YFC0800401)National Natural Science Foundation of China(61890544,61522106,61631007,61571117,61731010,61735010,61722106,61701107,and 61701108)+3 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX19_0081)Scientific Research Foundation of Graduate School of Southeast University(YBPY1938)Foundation of National Excellent Doctoral Dissertation of China(201444)the 111 Project(111-2-05).
文摘Programmable metasurface enables controlling electromagnetic (EM) waves in real time. By programming the states of active device embedded in metasurface element, the EM properties of the digital metasurface can be changed quickly without redesigning their structures. However, large numbers of long-distance wires are required to connect the programmable metasurface to provide the coded signals from field programmable gate array (FPGA) when controlling the metasurface at a long distance, which is complicated and inconvenient. Here, we propose an infrared-controlled programmable metasurface that can be programmed remotely. The infrared transceiver is able to switch the coding sequences stored in the FPGA controller, thus controlling the voltage on the varactors integrated in the metasurface. Experiment is performed at microwave frequencies, and the measured results verify that the scattering beams of the metasurface sample can be changed remotely by using infrared ray. The proposed infrared-controlled programmable metasurface opens up avenues for constructing a new class of remotely-tuning dynamic metasurfaces.