Based on Chua’s chaotic oscillation circuit, a fifth-order chaotic circuit with two memristors is designed and its corresponding dimensionless mathematic model is established. By using conventional dynamical analysis...Based on Chua’s chaotic oscillation circuit, a fifth-order chaotic circuit with two memristors is designed and its corresponding dimensionless mathematic model is established. By using conventional dynamical analysis methods, stability analysis of the equilibrium set of the circuit is performed, the distribution of stable and unstable regions corresponding to the memristor initial states is achieved, and the complex dynamical behaviors of the circuit depending on the circuit parameters and the memristor initial states are investigated. The theoretical analysis and numerical simulation results demonstrate that the proposed chaotic circuit with two memristors has an equilibrium set located on the plane constituted by the inner state variables of two memristors. The stability of the equilibrium set depends on both the circuit parameters and the initial states of the two memristors. Rich nonlinear dynamical phenomena, such as state transitions, transient hyperchaos and so on, are expected.展开更多
Multipartite entangled states like the W-class are of growing interest since they exhibit a variety of possible applications ranging from quantum computation to genuine random number generation. Here, we present a uni...Multipartite entangled states like the W-class are of growing interest since they exhibit a variety of possible applications ranging from quantum computation to genuine random number generation. Here, we present a universal setup to generate high-order single photon W-states based on three-dimensional integrated-photonic waveguide struc- tures. Additionally, we present a novel method to charac- terize the device's unitary by means of classical light only.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 60971090)the Natural Science Foundations of Jiangsu Province, China (Grant No. BK2009105)
文摘Based on Chua’s chaotic oscillation circuit, a fifth-order chaotic circuit with two memristors is designed and its corresponding dimensionless mathematic model is established. By using conventional dynamical analysis methods, stability analysis of the equilibrium set of the circuit is performed, the distribution of stable and unstable regions corresponding to the memristor initial states is achieved, and the complex dynamical behaviors of the circuit depending on the circuit parameters and the memristor initial states are investigated. The theoretical analysis and numerical simulation results demonstrate that the proposed chaotic circuit with two memristors has an equilibrium set located on the plane constituted by the inner state variables of two memristors. The stability of the equilibrium set depends on both the circuit parameters and the initial states of the two memristors. Rich nonlinear dynamical phenomena, such as state transitions, transient hyperchaos and so on, are expected.
基金financial support from the German Ministry of Education and Research (Center for Innovation Competence program, Grant No. 03Z1HN31)the Thuringian Ministry for Education, Science and Culture (Research group Spacetime, Grant No. 11027-514)+1 种基金the Deutsche Forschungsgemeinschaft (Grant No. NO462/6-1)the German-Israeli Foundation for Scientific Research and Development (Grant No. 1157-127.14/ 2011)
文摘Multipartite entangled states like the W-class are of growing interest since they exhibit a variety of possible applications ranging from quantum computation to genuine random number generation. Here, we present a universal setup to generate high-order single photon W-states based on three-dimensional integrated-photonic waveguide struc- tures. Additionally, we present a novel method to charac- terize the device's unitary by means of classical light only.