On the basis of EST (Equivalent STate hashing) algorithm, this paper researches a kind of test generation algorithm based on search state dominance for combinational circuit. According to the dominance relation of the...On the basis of EST (Equivalent STate hashing) algorithm, this paper researches a kind of test generation algorithm based on search state dominance for combinational circuit. According to the dominance relation of the E-frontier (evaluation frontier), we can prove that this algorithm can terminate unnecessary searching step of test pattern earlier than the EST algorithm through some examples, so this algorithm can reduce the time of test generation. The test patterns calculated can detect faults given through simulation.展开更多
Single-event transient pulse quenching (Quenching effect) is employed to effectively mitigate WSET (SET pulse width). It en- hanced along with the increased charge sharing which is norm for future advanced technol...Single-event transient pulse quenching (Quenching effect) is employed to effectively mitigate WSET (SET pulse width). It en- hanced along with the increased charge sharing which is norm for future advanced technologies. As technology scales, param- eter variation is another serious issue that significantly affects circuit's performance and single-event response. Monte Carlo simulations combined with TCAD (Technology Computer-Aided Design) simulations are conducted on a six-stage inverter chain to identify and quantify the impact of charge sharing and parameter variation on pulse quenching. Studies show that charge sharing induce a wider WSET spread range. The difference of WSET range between no quenching and quenching is smaller in NMOS (N-Channel Metal-Oxide-Semiconductor Field-Effect Transistor) simulation than that in PMOS' (P-Channel Met- N-Oxide-Semiconductor Field-Effect Transistor), so that from parameter variation view, quenching is beneficial in PMOS SET mitigation. The individual parameter analysis indicates that gate oxide thickness (TOXE) and channel length variation (XL) mostly affect SET response of combinational circuits. They bring 14.58% and 19.73% average WSET difference probabilities for no-quenching cases, and 105.56% and 123.32% for quenching cases.展开更多
文摘On the basis of EST (Equivalent STate hashing) algorithm, this paper researches a kind of test generation algorithm based on search state dominance for combinational circuit. According to the dominance relation of the E-frontier (evaluation frontier), we can prove that this algorithm can terminate unnecessary searching step of test pattern earlier than the EST algorithm through some examples, so this algorithm can reduce the time of test generation. The test patterns calculated can detect faults given through simulation.
基金supported by the Harbin Science and Innovation Research.(Grant No.2012RFXXG042)
文摘Single-event transient pulse quenching (Quenching effect) is employed to effectively mitigate WSET (SET pulse width). It en- hanced along with the increased charge sharing which is norm for future advanced technologies. As technology scales, param- eter variation is another serious issue that significantly affects circuit's performance and single-event response. Monte Carlo simulations combined with TCAD (Technology Computer-Aided Design) simulations are conducted on a six-stage inverter chain to identify and quantify the impact of charge sharing and parameter variation on pulse quenching. Studies show that charge sharing induce a wider WSET spread range. The difference of WSET range between no quenching and quenching is smaller in NMOS (N-Channel Metal-Oxide-Semiconductor Field-Effect Transistor) simulation than that in PMOS' (P-Channel Met- N-Oxide-Semiconductor Field-Effect Transistor), so that from parameter variation view, quenching is beneficial in PMOS SET mitigation. The individual parameter analysis indicates that gate oxide thickness (TOXE) and channel length variation (XL) mostly affect SET response of combinational circuits. They bring 14.58% and 19.73% average WSET difference probabilities for no-quenching cases, and 105.56% and 123.32% for quenching cases.