本文介绍的4种新型数据转换器集成电路:ADC083000、AD7980、MAX1302、LTC2641。数据转换器包括ADC和DAC两大类,ADC是“Analog to Digital Converters”的缩写,中文名称是模数转换器,DAC是“Digital to Analog Converters”的缩写,...本文介绍的4种新型数据转换器集成电路:ADC083000、AD7980、MAX1302、LTC2641。数据转换器包括ADC和DAC两大类,ADC是“Analog to Digital Converters”的缩写,中文名称是模数转换器,DAC是“Digital to Analog Converters”的缩写,中文名称是数模转换器,此处的“数”是指“数字信号”,“模”是指“模拟信号”。我们已经开始进入数字化时代,数字化技术使参量的存储、处理、还原、转化、借用变得非常容易且不易产生额外的失真,不过通常我们所能感知的参量都是模拟的,如声音、图像、光线、温度、疼痛、压力、气味等,数据转换器在模拟与数字之间的转换起着重要的桥梁作用。实际的应用系统中,为了将模拟量转化为数字量,传感器是必须的,如数码相机中的CCD器件,温度传感器、压力传感器等;为了将数字量转化为模拟量,最终模拟执行机构也是必须的,大多根据实际用途来命名,如荧光屏是显示图像的,扬声器是发出声音的,继电器用作开关,这些器件作为一个系统的执行机构,将数字信息变为我们可以实际感知的信息——模拟参量。展开更多
A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented witho...A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.展开更多
A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity re...A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.展开更多
A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplif...A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.展开更多
This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with v...This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.展开更多
An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input vol...An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input voltage of the proposed transconductor is 4.0Vpp(peak to peak), whereas the differential input voltage of the existing source degeneration structure is 2.2Vpp, when their nonlinear errors are required to be less than 0.15%.展开更多
Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,...Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.展开更多
Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is propose...Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specifically suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.展开更多
A suitable inductor modeling for power electronic DC-DC converters is presented in this paper. It is developed with the aim of improving inductor losses estimation achievable by averaged models, which inherently negle...A suitable inductor modeling for power electronic DC-DC converters is presented in this paper. It is developed with the aim of improving inductor losses estimation achievable by averaged models, which inherently neglect inductor current ripple. In order to account for its contribution to the overall inductor losses, an appropriate parallel resistance is thus enclosed into the inductor model, whose value should be chosen in accordance with the DC-DC converter operating conditions. This allows the development of improved averaged models of DC-DC converters, especially in terms of power losses estimation. The effectiveness of the proposed modeling approach has been validated through a simulation study, which refers to the case of a boost DC-DC converter and is performed by means of a suitable circuit simulator designed for rapid modelling of switching power systems (SIMetrix/SIMPLIS).展开更多
A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase...A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.展开更多
Over the years,the efficiency of inorganic perovskite solar cells(PSCs)has increased at an unprecedented pace.However,energy loss in the device has limited a further increase in efficiency and commercialization.In thi...Over the years,the efficiency of inorganic perovskite solar cells(PSCs)has increased at an unprecedented pace.However,energy loss in the device has limited a further increase in efficiency and commercialization.In this work,we used(NH4)2C2O4·H2O to treat CsPbBrI2 perovskite film during spin-coating.The CsPbBrI2 underwent secondary crystallization to form high quality films with micrometer-scale and low trap density.(NH4)2C2O4·H2O treatment promoted charge transfer capacity and reduced the ideal factor.It also dropped the energy loss from 0.80 to 0.64 eV.The resulting device delivered a power conversion efficiency(PCE)of 16.55%with an open-circuit voltage(Voc)of 1.24 V,which are largely improved compared with the reference device which exhibited a PCE of 13.27%and a Voc of 1.10 V.In addition,the optimized treated device presented a record indoor PCE of 28.48%under a fluorescent lamp of 1000 lux,better than that of the reference device(19.05%).展开更多
The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and...The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 μm to 300 μm. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ α-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ α-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.展开更多
文摘本文介绍的4种新型数据转换器集成电路:ADC083000、AD7980、MAX1302、LTC2641。数据转换器包括ADC和DAC两大类,ADC是“Analog to Digital Converters”的缩写,中文名称是模数转换器,DAC是“Digital to Analog Converters”的缩写,中文名称是数模转换器,此处的“数”是指“数字信号”,“模”是指“模拟信号”。我们已经开始进入数字化时代,数字化技术使参量的存储、处理、还原、转化、借用变得非常容易且不易产生额外的失真,不过通常我们所能感知的参量都是模拟的,如声音、图像、光线、温度、疼痛、压力、气味等,数据转换器在模拟与数字之间的转换起着重要的桥梁作用。实际的应用系统中,为了将模拟量转化为数字量,传感器是必须的,如数码相机中的CCD器件,温度传感器、压力传感器等;为了将数字量转化为模拟量,最终模拟执行机构也是必须的,大多根据实际用途来命名,如荧光屏是显示图像的,扬声器是发出声音的,继电器用作开关,这些器件作为一个系统的执行机构,将数字信息变为我们可以实际感知的信息——模拟参量。
文摘A CMOS folding and interpolating analog-to-digital converter (ADC) for embedded application is described.The circuit is fully compatible with standard digital CMOS technology.A modified folding block implemented without resistor contributes to a small chip area.At the input stage,offset averaging reduces the input capacitance and the distributed track-and-hold circuits are proposed to improve signal-to-noise-plus-distortion ratio.The 200Ms/s 8bit ADC with 177mW total power consumption at 3.3V power supply is realized in standard digital 0.18μm 3.3V CMOS technology.
文摘A novel, highly linear sampling switch suitable for low-voltage operation is proposed. This switch not only eliminates the nonlinearity introduced by gate-source voltage variation, but also reduces the nonlinearity resuiting from threshold voltage variation, which has not been accomplished in earlier low-voltage sampling switches. This is achieved by adopting a replica transistor with the same threshold voltage as the sampling transistor. The effectiveness of this technique is demonstrated by a prototype design of a sampling switch in 0. 35μm. The proposed sampling switch achieves a spurious free dynamic range of 111dB for a 0. 2MHz, 1.2Vp-p input signal, sampled at a rate of 2MS/s,about 18dB over the Bootstrapped switch. Also, the on-resistance variation is reduced by 90%. This method is especially useful for low-voltage, high resolution ADCs, which is a hot topic today.
文摘A complementary metal-oxide-semiconductor transistor (CMOS) voltage-to-current(VTC)converter with high linearity for current-mode analog and digital integrated circuits is described. A high gain operational amplifier (OPA) is utilized to form negative feedback. A proportional to absolute temperature (PTAT) current reference with transistors operated in a weak inversion is used as the bias circuit. The resistor and the OPA nonlinearity behavior are analyzed in detail. By optimizing parameters in OPA and adopting a small voltage coefficient polysilicon resistor as a linear device, a high linearity is achieved. The circuit is implemented in a standard 0. 6 μm CMOS technology. The low frequency gain of the OPA exceeds 90 dB. The test results indicate that the total harmonic distortion (THD)is 0. 000 2%. The common-mode input linearity range is 0 to 2. 6 V. Correspondingly, the output current range is 50 to 426μA. The sensitivity of the PTAT current reference to Vdd is approximately 0. 021 7. The chip consumes a power of less than 1.3 mW for a 5 V supply, and occupies an area of 0. 112 mm^2.
基金the National Natural Science Foundation of China (No. 90707002)the Natural Science Foundation of Zheji-ang Province, China (No. Z104441)
文摘This paper presents a multi-mode control scheme for a soft-switched flyback converter to achieve high efficiency and excellent load regulation over the entire load range. At heavy load, critical conduction mode with valley switching (CCMVS) is employed to realize soft switching so as to reduce turn-on loss of power switch as well as conducted electromagnetic interference (EMI). At light load, the converter operates in discontinuous conduction mode (DCM) with valley switching and adaptive off-time control (AOT) to limit the switching frequency range and maintain load regulation. At extremely light load or in standby mode, burst mode operation is adopted to provide low power consumption through reducing both switching frequency and static power dissipation of the controller. The multi-mode control is implemented by an oscillator whose pulse duration is adjusted by output feedback. An accurate valley switching control circuit guarantees the minimum turn-on voltage drop of power switch. The pro-totype of the controller IC was fabricated in a 1.5-μm BiCMOS process and applied to a 310 V/20 V, 90 W flyback DC/DC converter circuitry. Experimental results showed that all expected functions were realized successfully. The flyback converter achieved a high efficiency of over 80% from full load down to 2.5 W, with the maximum reaching 88.8%, while the total power consumption in standby mode was about 300 mW.
文摘An improved structure of linear transconductor is presented in this paper. It is analyzed in theory and simulated with Spectre based on 0.25μm CMOS process. The simulation results show that the differential input voltage of the proposed transconductor is 4.0Vpp(peak to peak), whereas the differential input voltage of the existing source degeneration structure is 2.2Vpp, when their nonlinear errors are required to be less than 0.15%.
基金Project supported by the National Natural Science Foundation of China (No. 50277035)the Natural Science Foundation of Zheji-ang Province (No. Z104441),China
文摘Cascaded multilevel converters built with integrated modules have many advantages such as increased power density,flexible distributed control,multi-functionality,increased reliability and short design cycles.However,the system performance will be affected due to the synchronization errors among each integrated modules.This paper analyzes the impact of the three kinds of synchronization errors on the whole system performance,as well as detailed synchronization implementation.Some valuable conclusions are derived from the theoretical analysis,simulations and experimental results.
基金supported by Program for New Century Excellent Talents in University(NCET)(2008)Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality+1 种基金 (PHR(IHLB)) and Beijing Novel Research Star(2005B01)Ministry of Beijing Science and Technology
文摘Recently, resonant AC/DC converter has been accepted by the industry. However, the efficiency will be decreased at light load. So, a novel topology with critical controlling mode combined with resonant ones is proposed in this paper. The new topology can correspond to a 90 plus percent of power converting. So,a novel topology of an state of art integrated circuit, which can be used as power management circuit, has been designed based on the above new topology. A simulator which is specifically suitable for the power controller has been founded in this work and it has been used for the simulation of the novel architecture and the proposed integrated circuit.
文摘A suitable inductor modeling for power electronic DC-DC converters is presented in this paper. It is developed with the aim of improving inductor losses estimation achievable by averaged models, which inherently neglect inductor current ripple. In order to account for its contribution to the overall inductor losses, an appropriate parallel resistance is thus enclosed into the inductor model, whose value should be chosen in accordance with the DC-DC converter operating conditions. This allows the development of improved averaged models of DC-DC converters, especially in terms of power losses estimation. The effectiveness of the proposed modeling approach has been validated through a simulation study, which refers to the case of a boost DC-DC converter and is performed by means of a suitable circuit simulator designed for rapid modelling of switching power systems (SIMetrix/SIMPLIS).
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)
文摘A high speed column-parallel CDS/ADC circuit with nonlinearity compensation is proposed in this paper.The correlated double sampling (CDS) and analog-to-digital converter (ADC) functions are integrated in a threephase column-parallel circuit based on two floating gate inverters and switched-capacitor network.The conversion rate of traditional single-slope ADC is speeded up by dividing quantization to coarse step and fine step.A storage capacitor is used to store the result of coarse step and locate the section of ramp signal of fine step,which can reduce the clock step from 2 n to 2 (n/2+1).The floating gate inverters are implemented to reduce the power consumption.Its induced nonlinear offset is cancelled by introducing a compensation module to the input of inverter,which can equalize the coupling path in three phases of the proposed circuit.This circuit is designed and simulated for CMOS image sensor with 640×480 pixel array using Chartered 0.18μm process.Simulation results indicate that the resolution can reach 10-bit and the maximum frame rate can reach 200 frames/s with a main clock of 10MHz.The power consumption of this circuit is less than 36.5μW with a 3.3V power supply.The proposed CDS/ADC circuit is suitable for high resolution and high speed image sensors.
基金financial support from the National Key R&D Program of China(2016YFA0202400)the National Natural Science Foundation of China(61674109)+4 种基金the Natural Science Foundation of Jiangsu Province(BK20170059)funded by the Collaborative Innovation Center of Suzhou Nano Science and Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the “111”Project of The State Administration of Foreign Experts Affairs of Chinathe Open Fund of the State Key Laboratory of Integrated Optoelectronics(IOSKL2018KF07)。
文摘Over the years,the efficiency of inorganic perovskite solar cells(PSCs)has increased at an unprecedented pace.However,energy loss in the device has limited a further increase in efficiency and commercialization.In this work,we used(NH4)2C2O4·H2O to treat CsPbBrI2 perovskite film during spin-coating.The CsPbBrI2 underwent secondary crystallization to form high quality films with micrometer-scale and low trap density.(NH4)2C2O4·H2O treatment promoted charge transfer capacity and reduced the ideal factor.It also dropped the energy loss from 0.80 to 0.64 eV.The resulting device delivered a power conversion efficiency(PCE)of 16.55%with an open-circuit voltage(Voc)of 1.24 V,which are largely improved compared with the reference device which exhibited a PCE of 13.27%and a Voc of 1.10 V.In addition,the optimized treated device presented a record indoor PCE of 28.48%under a fluorescent lamp of 1000 lux,better than that of the reference device(19.05%).
基金supported by the Natural Science Foundation of Fujian Province of China (Grant No. A0220001)Science Research Project of Leshan Vocational & Technical College (Grant No. KY2011001)the Key Research Project in Science and Technology of Leshan (Grant No. 2011GZD050)
文摘The P+ α-Si /N+ polycrystalline solar cell is molded using the AMPS-1D device simulator to explore the new high efficiency thin film poly-silicon solar cell. In order to analyze the characteristics of this device and the thickness of N+ poly-silicon, we consider the impurity concentration in the N+ poly-silicon layer and the work function of transparent conductive oxide (TCO) in front contact in the calculation. The thickness of N+ poly-silicon has little impact on the device when the thickness varies from 20 μm to 300 μm. The effects of impurity concentration in polycrystalline are analyzed. The conclusion is drawn that the open-circuit voltage (Voc) of P+ α-Si /N+ polycrystalline solar cell is very high, reaching 752 mV, and the conversion efficiency reaches 9.44%. Therefore, based on the above optimum parameters the study on the device formed by P+ α-Si/N+ poly-silicon is significant in exploring the high efficiency poly-silicon solar cell.