The Balanced Truncation Method (BTM) is applied to an even distributed RC interconnect case by using Wang's closed-forms of even distributed RC interconnect models. The results show that extremely high order RC in...The Balanced Truncation Method (BTM) is applied to an even distributed RC interconnect case by using Wang's closed-forms of even distributed RC interconnect models. The results show that extremely high order RC interconnect can be high-accurately approximated by only third order balanced model. Related simulations are executed in both time domain and frequency domain. The results may be applied to VLSI interconnect model reduction and design.展开更多
This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell vol...This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.展开更多
The oxygen reduction reaction (ORR) is the cornerstone reaction of the cathode in metal±air batteries;however,slow kinetics requires high-performance catalysts to promote the reaction.Polyphthalocyanine (PPc) has...The oxygen reduction reaction (ORR) is the cornerstone reaction of the cathode in metal±air batteries;however,slow kinetics requires high-performance catalysts to promote the reaction.Polyphthalocyanine (PPc) has a typical chemical cross-linking structure and uniformly dispersed metal active sites,but its poor activity and conductivity limit its applications as an ORR catalyst.Herein,a manageable and convenient strategy is proposed to synthesize ternary ORR catalysts through the low-temperature pyrolysis of Fe PPc.The optimal catalyst,Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5,exhibits excellent ORR activity in alkaline solution with a half-wave potential of 0.90 V,which is significantly higher than that of commercial 20%Pt/C (0.84 V).Electrochemical tests and extended X-ray absorption fine structure spectroscopy reveal that the superior ORR activity of Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5 could be ascribed to the balance of its ternary components(i.e.,Fe_(3)O_(4),Fe_(3)N,and Fe-N;species).A Zn±air battery incorporating Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5 as an air cathodic catalyst delivers a high open-circuit voltage and peak power density.During galvanostatic discharge,the battery demonstrates a specific capacity of 815.7 mA h g^(-1).The facile strategy of using PPc to develop high-performance composite electrocatalysts may be expanded to develop new types of catalysts in the energy field.展开更多
基金Supported in part by the National Science Foundation (US) under Grant CCR 0098275
文摘The Balanced Truncation Method (BTM) is applied to an even distributed RC interconnect case by using Wang's closed-forms of even distributed RC interconnect models. The results show that extremely high order RC interconnect can be high-accurately approximated by only third order balanced model. Related simulations are executed in both time domain and frequency domain. The results may be applied to VLSI interconnect model reduction and design.
基金Supported by the National Natural Science Foundation of China(51201058)the Natural Science Foundation of Hebei Province(E2014209009)
文摘This study is for investigating the direct electro-deoxidation of mixed TiO2-Mn02 powder to prepare TiMn2 alloy in molten calcium chloride. The influences of process parameters, such as sintering temperature, cell voltage, and electrolysis time, on the electrolysis process were examined to investigate the mechanism of alloy formation. The composition and morphology of the products were analyzed by XRD and SEM, respectively. The electrochemical property of TiMn2 alloy was investigated by cyclic voltammetry measurements. The results show that pure TiMn2 can be prepared by direct electrochemical reduction of mixed TiO2/Mn02 pellets at a voltage of 3.1 V in molten calcium chloride of 900 ℃ for 7 h. The electro-deoxidation proceeds from the reduction of manganese oxides to Mn, which is reduced by Ti02 or CaTiOB to form TiMn2 alloy. The cyclic voltammetry measurements using pow- der microelectTode show that the prepared TiMn2 alloy has good electrochemical hydrogen storage property.
基金financially supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen (JCYJ20200109141640095 and JCYJ20190809115413414)the National Natural Science Foundation of China (21671096 and 21905180)+2 种基金the Natural Science Foundation of Guangdong Province (2018A030310225)Guangdong Provincial Key Laboratory of Energy Materials for Electric Power (2018B030322001)support from the Center for Computational Science and Engineering and Core Research Facilities of SUSTech。
文摘The oxygen reduction reaction (ORR) is the cornerstone reaction of the cathode in metal±air batteries;however,slow kinetics requires high-performance catalysts to promote the reaction.Polyphthalocyanine (PPc) has a typical chemical cross-linking structure and uniformly dispersed metal active sites,but its poor activity and conductivity limit its applications as an ORR catalyst.Herein,a manageable and convenient strategy is proposed to synthesize ternary ORR catalysts through the low-temperature pyrolysis of Fe PPc.The optimal catalyst,Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5,exhibits excellent ORR activity in alkaline solution with a half-wave potential of 0.90 V,which is significantly higher than that of commercial 20%Pt/C (0.84 V).Electrochemical tests and extended X-ray absorption fine structure spectroscopy reveal that the superior ORR activity of Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5 could be ascribed to the balance of its ternary components(i.e.,Fe_(3)O_(4),Fe_(3)N,and Fe-N;species).A Zn±air battery incorporating Fe_(3)O_(4)/Fe_(3)N/Fe-N-C@PC-2.5 as an air cathodic catalyst delivers a high open-circuit voltage and peak power density.During galvanostatic discharge,the battery demonstrates a specific capacity of 815.7 mA h g^(-1).The facile strategy of using PPc to develop high-performance composite electrocatalysts may be expanded to develop new types of catalysts in the energy field.