Incorporating electric vehicles into smart grid,vehicle-to-Grid(V2G) makes it feasible to charge for large-scale electric vehicles,and in turn support electric vehicles,as mobile and distributed storage units,to disch...Incorporating electric vehicles into smart grid,vehicle-to-Grid(V2G) makes it feasible to charge for large-scale electric vehicles,and in turn support electric vehicles,as mobile and distributed storage units,to discharge to smart grid.In order to provide reliable and efficient services,the operator of V2 G networks needs to monitor realtime status of every plug-in electric vehicle(PEV) and then evaluate current electricity storage capability.Anonymity,aggregation and dynamic management are three basic but crucial characteristics of which the services of V2 G networks should be.However,few of existing authentication schemes for V2 G networks could satisfy them simultaneously.In this paper,we propose a secure and efficient authentication scheme with privacy-preserving for V2 G networks.The scheme makes the charging/discharging station authenticate PEVs anonymously and manage them dynamically.Moreover,the monitoring data collected by the charging/discharging station could be sent to a local aggregator(LAG)in batch mode.In particular,time overheads during verification stage are independent with the number of involved PEVs,and there is no need to update the membership certificate and key pair before PEV logs out.展开更多
The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based c...The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.展开更多
It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Togeth...It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Together with the change on demand side that comes with the global "electrification", this can lead to serious grid congestion in low voltage grids and massive grid investments in solving this congestion. Smart charging can partly solve this issue, but with using a connected EV (electric vehicle) as a small distribution unit, combined with bi-directional charging or V2G (vehicle-to-grid) technology, these investments can be reduced to a minimum. In Lombok, Utrecht, the Netherlands, an innovative pilot was initiated with smart solar charging stations, shared electric vehicles and AC (alternating current) V2G technology. This unique combination proves that EVs are an opportunity for the grid rather than a threat. A unique partnership with OEM Renault was established to develop an AC V2G vehicle product line and work on open standardized communication between the EV, the charging station and the grid.展开更多
An overview of V2G (vehicle-to-grid) technology is presented in this paper, it aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strat...An overview of V2G (vehicle-to-grid) technology is presented in this paper, it aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strategies lbr PEVs (plug-in electric vehicles), the V2G concept is introduced, especially highlighting its potentiality as a revenue opportunity |br PEV owners: this is mainly due to the V2G ability to provide ancillary services, such as load leveling, regulation and reserve. Such solutions have been thoroughly investigated in the literature from both the economic and technical points of view and are here reported. In addition, V2G requirements such as mobility needs, charging stations availability and appropriate PEV aggregative architectures are properly taken into account. Finally, future developments and scenarios have also been reported.展开更多
In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game...In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game model.A game model of power grid companies and electric vehicle users based on the evolutionary game theory is established to balance the revenue of both players in the game.By studying the dynamic evolution process of both sides of the game,the range of discharge price that satisfies the interests of both sides is obtained.The results are compared with those obtained by the static Bayesian game.The results show that the discharge price which can benefit both sides of the game exists in a specific range.According to the setting of the example,the reasonable discharge electricity price is 1.1060 to 1.4811 yuan/(kW·h).Only within this range can the power grid company and electric vehicle users achieve positive interactions.In addition,the evolutionary game model is easier to balance the interests of the two players than the static Bayesian game.展开更多
Combined with the perspective of State Grid Corporation of China (SGCC), the paper researches the EV battery swapping mode and its advantages, analyses standards requirements of battery swapping system and propos...Combined with the perspective of State Grid Corporation of China (SGCC), the paper researches the EV battery swapping mode and its advantages, analyses standards requirements of battery swapping system and proposes the corresponding standards system展开更多
Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) whi...Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.展开更多
基金the Natural Science Foundation of China(61102056,61201132)Fundamental Research Funds for the Central Universities of China(K5051301013)the 111 Project of China(B08038)
文摘Incorporating electric vehicles into smart grid,vehicle-to-Grid(V2G) makes it feasible to charge for large-scale electric vehicles,and in turn support electric vehicles,as mobile and distributed storage units,to discharge to smart grid.In order to provide reliable and efficient services,the operator of V2 G networks needs to monitor realtime status of every plug-in electric vehicle(PEV) and then evaluate current electricity storage capability.Anonymity,aggregation and dynamic management are three basic but crucial characteristics of which the services of V2 G networks should be.However,few of existing authentication schemes for V2 G networks could satisfy them simultaneously.In this paper,we propose a secure and efficient authentication scheme with privacy-preserving for V2 G networks.The scheme makes the charging/discharging station authenticate PEVs anonymously and manage them dynamically.Moreover,the monitoring data collected by the charging/discharging station could be sent to a local aggregator(LAG)in batch mode.In particular,time overheads during verification stage are independent with the number of involved PEVs,and there is no need to update the membership certificate and key pair before PEV logs out.
基金supported in part by the European Commission through the project P2P-Smartest:Peer to Peer Smart Energy Distribution Networks (H2020-LCE-2014-3,project 646469)
文摘The charging of electric vehicles(EVs) impacts the distribution grid, and its cost depends on the price of electricity when charging. An aggregator that is responsible for a large fleet of EVs can use a market-based control algorithm to coordinate the charging of these vehicles, in order to minimize the costs. In such an optimization, the operational parameters of the distribution grid, to which the EVs are connected, are not considered. This can lead to violations of the technical constraints of the grid(e.g., undervoltage, phase unbalances); for example, because many vehicles start charging simultaneously when the price is low. An optimization that simultaneously takes the economic and technical aspects into account is complex, because it has to combine time-driven control at the market level with eventdriven control at the operational level. Diff erent case studies investigate under which circumstances the market-based control, which coordinates EV charging, conflicts with the operational constraints of the distribution grid. Especially in weak grids, phase unbalance and voltage issues arise with a high share of EVs. A low-level voltage droop controller at the charging point of the EV can be used to avoid many grid constraint violations, by reducing the charge power if the local voltage is too low. While this action implies a deviation from the cost-optimal operating point, it is shown that this has a very limited impact on the business case of an aggregator, and is able to comply with the technical distribution grid constraints, even in weak distribution grids with many EVs.
文摘It is to be expected that the number of electric vehicles will be growing in the near future. This trend comes together with the development of smaller decentralized generation units, like PV (photo voltaic). Together with the change on demand side that comes with the global "electrification", this can lead to serious grid congestion in low voltage grids and massive grid investments in solving this congestion. Smart charging can partly solve this issue, but with using a connected EV (electric vehicle) as a small distribution unit, combined with bi-directional charging or V2G (vehicle-to-grid) technology, these investments can be reduced to a minimum. In Lombok, Utrecht, the Netherlands, an innovative pilot was initiated with smart solar charging stations, shared electric vehicles and AC (alternating current) V2G technology. This unique combination proves that EVs are an opportunity for the grid rather than a threat. A unique partnership with OEM Renault was established to develop an AC V2G vehicle product line and work on open standardized communication between the EV, the charging station and the grid.
文摘An overview of V2G (vehicle-to-grid) technology is presented in this paper, it aims to highlight the main features, opportunities and requirements of V2G. Thus, after briefly resuming the most popular charging strategies lbr PEVs (plug-in electric vehicles), the V2G concept is introduced, especially highlighting its potentiality as a revenue opportunity |br PEV owners: this is mainly due to the V2G ability to provide ancillary services, such as load leveling, regulation and reserve. Such solutions have been thoroughly investigated in the literature from both the economic and technical points of view and are here reported. In addition, V2G requirements such as mobility needs, charging stations availability and appropriate PEV aggregative architectures are properly taken into account. Finally, future developments and scenarios have also been reported.
基金The National Natural Science Foundation of China(No.51577028).
文摘In order to protect the interests of electric vehicle users and grid companies with vehicle-to-grid(V2G)technology,a reasonable electric vehicle discharge electricity price is established through the evolutionary game model.A game model of power grid companies and electric vehicle users based on the evolutionary game theory is established to balance the revenue of both players in the game.By studying the dynamic evolution process of both sides of the game,the range of discharge price that satisfies the interests of both sides is obtained.The results are compared with those obtained by the static Bayesian game.The results show that the discharge price which can benefit both sides of the game exists in a specific range.According to the setting of the example,the reasonable discharge electricity price is 1.1060 to 1.4811 yuan/(kW·h).Only within this range can the power grid company and electric vehicle users achieve positive interactions.In addition,the evolutionary game model is easier to balance the interests of the two players than the static Bayesian game.
文摘Combined with the perspective of State Grid Corporation of China (SGCC), the paper researches the EV battery swapping mode and its advantages, analyses standards requirements of battery swapping system and proposes the corresponding standards system
基金supported by the 973 Program under Grant No.2011CB302506, 2012CB315802National Key Technology Research and Development Program of China under Grant No.2012BAH94F02+5 种基金The 863 Program under Grant No.2013AA102301NNSF of China under Grant No.61132001, 61170273Program for New Century Excel-lent Talents in University under Grant No. NCET-11-0592Project of New Generation Broad band Wireless Network under Grant No.2014ZX03006003The Technology Development and Experiment of Innovative Network Architecture(CNGI-12-03-007)The Open Fund Project of CAAC InformationTechnology Research Base(CAACITRB-201201)
文摘Batteries transfer management is one important aspect in electric vehicle(EV)network's intelligent operation management system.Batteries transfer is a special and much more complex VRP(Vehicle Routing Problem) which takes the multiple constraints such as dynamic multi-depots,time windows,simultaneous pickups and deliveries,distance minimization,etc.into account.We call it VRPEVB(VRP with EV Batteries).This paper,based on the intelligent management model of EV's battery power,puts forward a battery transfer algorithm for the EV network which considers the traffic congestion that changes dynamically and uses improved Ant Colony Optimization.By setting a reasonable tabv range,special update rules of the pheromone and path list memory functions,the algorithm can have a better convergence,and its feasibility is proved by the experiment in an EV's demonstration operation system.