A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet...A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.展开更多
In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy...In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.展开更多
Based on flow loss, a new automatic pipe-routing algorithm is proposed for electromechanical product in 3D space, which consists of pre-processing and optimization search. Utilizing chaos theory, a chaos grid preproce...Based on flow loss, a new automatic pipe-routing algorithm is proposed for electromechanical product in 3D space, which consists of pre-processing and optimization search. Utilizing chaos theory, a chaos grid preprocessing model (CGPM) is established to efficiently pick up the solution space and reduce the search range in the pre-processing, which simplifies the optimization search. A modified particle swarm optimization (PSO) algorithm is presented to seek for an approximate optimal trajectory in the solution space in the optimization search based on standard PSO algorithm and migration characters of people. The comparison of experiments and analysis results shows that the modified PSO algorithm is capable of preventing prematurity effectively and searching for the optimal trajectory more efficiently. Theoretical analysis proves that the modified PSO algorithm converges at global optimum. The examples show that the automatic pipe-routing algorithm based on flow loss is effective and practical for eleetromechanieal product.展开更多
We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 ce...We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.展开更多
A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for th...A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.展开更多
文摘A kind of low power connector used e.g. in household appliances was partly burned in routine experiment. The heat sources were four paralleled contacts constructed by springs (Sn/CuSn-alloy) in socket and a plug sheet (Ni/Steel) while mating. The contact interfaces were detected by scanning electronic microscope (SEM) and X-ray energy dispersive spectros- copy (XEDS), obvious wear tracks and various contaminants, including element Si, Al, Na, K, S, Cl, O, etc., were found. The contamination degrees on the four paralleled contacts were different, so that the ratio of average contact resistance on the four contacts was about 5:8:3:1. The maximum contact resistance on contacts of the plug sheet reached 28 ?. The main failure rea- sons were fretting and contamination between the contact interfaces. Fretting simulation showed that connection resistance of connectors was raised up, even to ohms level. When the current increased to 5 A, the socket housing was heated and decom- posed. By the thermal analysis, it was estimated that the connector would be burned under the lower current if the current was not evenly distributed on the four paralleled contacts caused by uneven contamination. Improvement methods for connector failure are also discussed.
基金Project(K1403375-11)supported by Science and Technology Planning Project of Changsha,ChinaProject(2015D009)supported by the Planned Science and Technology Project of Qingyuan City,ChinaProject(2015B04)supported by the Planned Science and Technology Project of Qingcheng District,Qingyuan City,China
文摘In the present investigation, electroless Ni-Cu-P/n-TiN composite coating was prepared using alkaline citrate-based bath. X-ray diffraction (XRD), scanning electron microscopy(SEM), energy-dispersive spectroscopy(EDS), electrochemical measurements, weight loss tests and Raman spectrometer were used to character the properties of the coating. As the Cu content increased from 7.3 wt% to 24.8 wt%, the corrosion current density of the Ni-Cu-P/n-TiN coating decreased from 10.80 to 4.34 ~tA. And the inclusion of Cu in NiP alloy resulted in refinement and less porosity in microstructure. The addition of TiN resulted in a slight decline in anti-corrosion property of the coating. As the mass loss test showed, Ni-24.8%Cu-P exhibited perfect corrosion resistance. Studies by Raman spectroscopy on coatings proved that Cu(II)3(PO4)(OH)3, Cu(OH)2 and CuO were examined while no compound of nickel was found, and Cu exhibited preferred corrosion in saline solution, providing cathodic protection to Ni alloy.
文摘Based on flow loss, a new automatic pipe-routing algorithm is proposed for electromechanical product in 3D space, which consists of pre-processing and optimization search. Utilizing chaos theory, a chaos grid preprocessing model (CGPM) is established to efficiently pick up the solution space and reduce the search range in the pre-processing, which simplifies the optimization search. A modified particle swarm optimization (PSO) algorithm is presented to seek for an approximate optimal trajectory in the solution space in the optimization search based on standard PSO algorithm and migration characters of people. The comparison of experiments and analysis results shows that the modified PSO algorithm is capable of preventing prematurity effectively and searching for the optimal trajectory more efficiently. Theoretical analysis proves that the modified PSO algorithm converges at global optimum. The examples show that the automatic pipe-routing algorithm based on flow loss is effective and practical for eleetromechanieal product.
文摘We do a new Li-ion battery evaluation research on the effects of cell resistance and polariza- tion on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evalu- ated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge- discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included De-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter U. The relationship between R, η, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.
基金Project(61074018)supported by the National Natural Science Foundation of ChinaProject(2012kfjj06)supported by Hunan Province Key Laboratory of Smart Grids Operation and Control(Changsha University of Science and Technology),China
文摘A comprehensive predictive strategy was proposed for the neutral-point balancing control of back-to-back three-level converters. The phase currents at both sides and the DC-link capacitor voltages were measured for the prediction of the neutral-point current. A quality function was found to balance the neutral-point, and a metabolic on-times distribution factor was used as a predicator to minimize the quality function at each switching state. Simulation results show that the proposed method produces smaller ripples in tested signals compared with the established one, namely, 9.15% less in a total harmonic distortion(THD) of line-to-line voltage, 1.08% less in the THD of phase current, and 0.9 V less in the ripple of the neutral-point voltage. The obtained experimental results show that the main harmonics of the line-to-line voltage and the phase current in the proposed method are improved by 10 d B and 6 d B, respectively, and the ripple of neutral-point voltage is halved compared to the established one.