Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration")...Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.展开更多
Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass tra...Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.展开更多
When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe...When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe field can be exhibited in such a system.Meanwhile,the probe absorption-gain spectra can be changed from absorption to zero,i.e.,electromagnetically induced transparency(EIT).It is easy to observe the light propagation experimentally,and it leads to potential applications in many fields of solid-state quantum information,for example,optical switching,detection and quantum computing.展开更多
文摘Based on the critical unstable of both crystal and magnetic structure of Gd-intermetallic compound near the competition of two strongly independent subsystem ("local 4f7" and "conduction electron concentration"), a new QPT (quantum point transition) is predicted by calculation of: (1) The band structure and density of state by density functional theory where a strong narrowing fluidity of fermions around EF with shifted to negative value "-0.8 eV "is observable in the Gd-intermetalliccompound system while in the Y-case, it is not dominated. An antiferromagnetic state on the fluidity of conduction band can be investigated; (2) The internal magnetic field due to short range exchange interaction Jij between the nearest neighbor of local magnetic moment of stable s-state of Gd (L = 0) through the mean field approximation and of Eigenvalue-Eigenfunction ~.(k) are calculated. While a strong negative value of Jy is predicted, the eigenvalue L(k) of the system shows a strong antiferromagnetic phase in the reciprocal lattice direction 〈010〉, 〈001〉 in the correlation length 3.38 ~A. Although the antiferromagnetic state at Rc 〈_ 3.38 °A is a puzzle but it is completely dominated at Rc = 9 °A after passing through the competition between ).λmin(O) and λmin(π) in the ranger of 3.2 °A 〈 Rc 〈 9 °A. Since both of the antiferromagnetic subsystems are sensitive to the predicted KF, the effect of decreasing of conduction electron is proposed to investigate, the change of the antiferromagnetic ordering state to the competition of ferromagnetic state (in direction 〈010〉) and antiferromagnetic state (in direction 〈001 〉 and 〈 100〉) resulted to paramagnetic state in the long range Rc = 9 °A.
基金Project supported by the Ministry of Education of China(No. 708060)the Cultivation Fund of the Key Scientific and Technical Innovation Projectthe Program for New Century Excellent Talents in University, Ministry of Education (No. NCET-08-0508),China
文摘Electromigration in porous media is enhanced by a new type of electrokinetic processing. Compared with a single -oriented electric field, a continuously reoriented electric field was proven to sharply enhance mass transport of several heavy metals in kaolin. The initial concentration of the metals was: Cd: 250 mg/kg; Cu: 250 mg/kg; Ni: 250 mg/kg; Zn: 900 mg/kg. Electric field reorientation was obtained by the use of a fixed anode and a cathode that rotated at different frequencies (0, 0.25, 1.00, 1.25, 2.00, 5.00 and 10.00 r/m). Mass transport evidently increased from 0 r/m to 1.25 r/m, and then decreased as the rotation speed reached 10 r/m. From 0 r/m to 1.25 r/m, mass transport increased 2.87 times for Cd, 3.17 times for Cu, 2.11 times for Ni, and 4.13 times for Zn. We suggest that continuous reorientation of the electric field facilitates the advance of ions through kaolin pores, minimizing the retardation effect caused by media tortuosity.
基金supported by the National Natural Science Foundation of China (Nos.61008063,10904015 and 10547108)the Key Project of the National Natural Science Foundation of China (No.60837004)
文摘When semiconductor quantum wells(SQWs) interact with lasers,the group velocity of the low-intensity light pulse is studied theoretically.It is shown that by adjusting the parameters,slow light propagation of the probe field can be exhibited in such a system.Meanwhile,the probe absorption-gain spectra can be changed from absorption to zero,i.e.,electromagnetically induced transparency(EIT).It is easy to observe the light propagation experimentally,and it leads to potential applications in many fields of solid-state quantum information,for example,optical switching,detection and quantum computing.