In order to limit short-circuit current and satisfy the need of relay setting, only part of the 220 kV power transformer is grounded, so on the neutrals of ungrounded transformers will appear the over-voltage. Current...In order to limit short-circuit current and satisfy the need of relay setting, only part of the 220 kV power transformer is grounded, so on the neutrals of ungrounded transformers will appear the over-voltage. Currently the value of over-voltage on transformer neutral point and the corresponding protection strategy is based on theoretical formula. This article uses the PSCAD/EMTDC software to calculate the over-voltage on the neutral point of 4 ungrounded power transformers in Chongqing 220 kV power grid. The result shows that the power frequency transient over-voltage on the neutrals may reach 178 kV. If the single-phase grounding fault occurs in ungrounded power system, the power frequency over-voltage on the neutrals will be more serious and rise to 138.6 kV. Non-full phase operation may cause serious ferro-resonance over-voltage on the neutrals of no-load transformer, which may last for seconds and may rise to 723.7 kV, causing serious threat to the transformer neutrals and line-side equipment. The article also studies the gap parameter which should be taken on the neutrals of 220 kV transformers at the end.展开更多
The reliability of electric supply to consumers is one of the most important factors that determine the requirements imposed on modem utility companies. This paper presents the results of investigation by computer sof...The reliability of electric supply to consumers is one of the most important factors that determine the requirements imposed on modem utility companies. This paper presents the results of investigation by computer software of the overvoltages resulting from a ferroresonance conditions in MV networks at open phase operating condition with and without connection to earth on source and load sides of distribution transformer. This overvoltage may reach 4.2 pu on one of the HV side of transformer unswitched phases. The results of the study show that ferroresonance overvoltage may be controlled by replacing fuses with circuit breakers on HV side to ensure switching-off all phases. Insertion of resistor or reactor in the neutral of source and loadsides of the transformer with 5% active load will help in suppressing overvoltages.展开更多
文摘In order to limit short-circuit current and satisfy the need of relay setting, only part of the 220 kV power transformer is grounded, so on the neutrals of ungrounded transformers will appear the over-voltage. Currently the value of over-voltage on transformer neutral point and the corresponding protection strategy is based on theoretical formula. This article uses the PSCAD/EMTDC software to calculate the over-voltage on the neutral point of 4 ungrounded power transformers in Chongqing 220 kV power grid. The result shows that the power frequency transient over-voltage on the neutrals may reach 178 kV. If the single-phase grounding fault occurs in ungrounded power system, the power frequency over-voltage on the neutrals will be more serious and rise to 138.6 kV. Non-full phase operation may cause serious ferro-resonance over-voltage on the neutrals of no-load transformer, which may last for seconds and may rise to 723.7 kV, causing serious threat to the transformer neutrals and line-side equipment. The article also studies the gap parameter which should be taken on the neutrals of 220 kV transformers at the end.
文摘The reliability of electric supply to consumers is one of the most important factors that determine the requirements imposed on modem utility companies. This paper presents the results of investigation by computer software of the overvoltages resulting from a ferroresonance conditions in MV networks at open phase operating condition with and without connection to earth on source and load sides of distribution transformer. This overvoltage may reach 4.2 pu on one of the HV side of transformer unswitched phases. The results of the study show that ferroresonance overvoltage may be controlled by replacing fuses with circuit breakers on HV side to ensure switching-off all phases. Insertion of resistor or reactor in the neutral of source and loadsides of the transformer with 5% active load will help in suppressing overvoltages.