TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. Th...TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.展开更多
Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles,...Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.展开更多
Palladium films with good adhesive strength were deposited on 316L stainless steel by brush plating. Scanning electronic microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), mass...Palladium films with good adhesive strength were deposited on 316L stainless steel by brush plating. Scanning electronic microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), mass loss tests and electrochemical methods were used to study the properties of the films. The brush plated palladium film mainly consisted of palladium. XPS analysis indicated that palladium was present in the films as metal state. The palladium plated stainless steel samples showed excellent corrosion resistance in boiling 20% H2SO4 solution and boiling acetic/formic acids with 0.005 mol/L Br- ions added. The corrosion rates of the palladium plated 316L stainless steel samples were about two orders of magnitude lower than those of the original 316L stainless steel samples. This method provides a possibility to prepare protective palladium films on stainless steel facilities with large areas in industrial sites.展开更多
A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2...A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.展开更多
The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical proper...The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.展开更多
Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co an...Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.展开更多
Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystall...Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystalline state of Bi2-xSbxTe3 films transformed from equiaxed crystal to dendritic crystal with the negative shift of deposition potential. XRD and EDS were used to characterize the structure and composition of the electrodeposited films. The Seebeck coefficient and the temperature dependence of the resistance of Bi2-xSbxTe3 films were measured. The results showed that the composition of the film electrodeposited at -0.5 V is Bi2-xSbxTe3 with the largest Seebeck coefficient of 213 μV·K^-1.展开更多
Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of t...Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of the applied platingcurrent density on the composition,structure and properties of Pd-Ni coatings were studied.By changing the current density in thesame bath,multi-layer Pd-Ni coatings were prepared on316L stainless steel.Scanning electronic microscopy,weight loss tests,adhesion strength,porosity and electrochemical methods were used to study the corrosion resistance of the films prepared bydifferent coating methods.Compared with the single layer Pd-Ni coating,the multi-layer coatings showed higher microhardness,lower internal stress,lower porosity and higher adhesive strength.The multi-layer Pd-Ni coating showed obviously better corrosionresistance in hot sulfuric acid solution containing Cl-.展开更多
基金Projects (50773015, 10775036) supported by the National Natural Science Foundation of China
文摘TiN/TiAlN multilayer coatings were prepared by arc ion plating with separate targets. In order to decrease the unfavorable macroparticles, a straight magnetized filter was used for the low melting aluminium target. The results show that the output plasmas of titanium target without filter and aluminium target with filter reach the substrate with the same order of magnitude. Meanwhile, the number of macropartieles in TiN/TiAlN multilayer coatings deposited with separate targets is only 1/10-1/3 of that deposited with alloy target reported in literature. Al atom addition may lead to the decrease of peak at (200) lattice plane and strengthening of peak at (111) and (220) lattice planes. The measured hardness of TiN/TiAlN multilayer coatings accords with the mixture principle and the maximum hardness is HV2495. The adhesion strength reaches 75 N.
基金Projects(51071070,51271079)supported by the National Natural Science Foundation of ChinaProject(NCET-11-0156)supported by New Century Excellent Talents in University,China
文摘Large area diamond films were fabricated on copper substrates by a multi-step process comprised of electroplating Cu-diamond composite layer on Cu substrate, plating a Cu layer to fix the protruding diamond particles, and depositing continuous diamond film on composite interlayer by hot-filament chemical vapor deposition (HFCVD). The interface characteristics, internal stress and adhesion strength were investigated by scanning electron microscopy, Raman analysis and indentation test. The results show that the continuous film without cracks is successfully obtained. The microstructure of the film is a mixture of large cubo-octahedron grains grown from homo-epitaxial growth and small grains with (111) apparent facets grown from lateral second nuclei. The improved adhesion between diamond film and substrate results from the deep anchoring of the diamond particles in the Cu matrix and the low residual stress in the film.
文摘Palladium films with good adhesive strength were deposited on 316L stainless steel by brush plating. Scanning electronic microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy (XPS), mass loss tests and electrochemical methods were used to study the properties of the films. The brush plated palladium film mainly consisted of palladium. XPS analysis indicated that palladium was present in the films as metal state. The palladium plated stainless steel samples showed excellent corrosion resistance in boiling 20% H2SO4 solution and boiling acetic/formic acids with 0.005 mol/L Br- ions added. The corrosion rates of the palladium plated 316L stainless steel samples were about two orders of magnitude lower than those of the original 316L stainless steel samples. This method provides a possibility to prepare protective palladium films on stainless steel facilities with large areas in industrial sites.
文摘A novel process for preparing tin oxide thin films directly on copper foil by electrodeposition was developed. An optimal preparation technology to obtain SnOz thin films was proposed with current density of 8 mA/cm^2, the time of deposition of 120 min, the concentration of tin dichloride of 0.02 mol/L and the concentration of dissociated acid of 0. 03 mol/L. The phase identification, microstructure and morphology of the thin films were investigated by thermogravimetric analysis and differential thermal analysis, X-ray diffraction, Fourier transform infrared spectra,scanning electron microscopy and transmission electron microscopy. The as-deposited thin film was composed of SnO2·xH2O was obtained by drying at room temperature. Nanocrystalline SnO2 thin film having tetragonal structure with average grain size in the range of 8 to 20 nm and porous, uniform surface was obtained by heat-treating the as-deposited film at 400 ℃ for 2 h. Electrochemical characterization shows that SnO2 film can deliver a discharge capacity of 798 mAh/g and the SnO2 film with smooth surface and annealed at 400 ℃ for 2 h has better cycle performance than that with rough surface and annealed at 150℃ for 10 h.
基金Projects(51401128,51275095) supported by the National Natural Science Foundation of ChinaProject(SKLRS-2013-MS-03) supported by the Open Fund from the State Key Laboratory of Robotics and System,China
文摘The TiN films were deposited on 316 L stainless steel substrates at low temperature by arc ion plating. The influences of substrate bias voltage and temperature on microstructure, residual stress and mechanical properties of the films were investigated by EDS, SEM, XRD and nanoindenter tester, respectively. The results showed that the TiN films were highly oriented in(111) orientation with a face-centered cubic structure. With the increase of substrate bias voltage and temperature, the diffraction peak intensity increased sharply with simultaneous peak narrowing, and the small grain sizes increased from 6.2 to 13.8 nm. As the substrate temperature increased from 10 to 300℃, the residual compressive stress decreased sharply from 10.2 to 7.7 GPa, which caused the hardness to decrease from 33.1 to 30.6 GPa, while the adhesion strength increased sharply from 9.6 to 21 N.
基金Project(2012BAE04B01) supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China
文摘Pd-Co films with the Co content varying from 21.9% to 34.62%(mole fraction) and Pd-Cu(5% Cu, mole fraction) film were electrodeposited on 316 L stainless steel, and the erosion-corrosion resistance of the Pd-Co and Pd-Cu plated samples in a simulated boiling pure terephthalic acid(PTA) slurry environment was studied with methods of mass loss test, polarization measurement and scanning electron microscopy(SEM). Under the static state condition, both the Pd-Cu and Pd-Co plated samples exhibit good corrosion resistance and the Pd-Cu film behaves slightly better. However, with increasing the stirring speed, the corrosion rate of the Pd-Cu plated samples increases obviously while that of the Pd-Co plated samples shows only slight increase. Higher microhardness and lower surface roughness of Pd-Co film than those of Pd-Cu film, as well as good corrosion resistance, may be the main reasons for better erosion-corrosion resistance in the strong reductive acid plus erosion environment.
基金This work was financially supported by the National Key Project on Basic Research of China (No.ZM200103A01)
文摘Bi2-xSbxTe3 thermoelectric films were electrochemically deposited from the solution containing Bi^3+, HTeO2^+and SbO^+. ESEM (environmental scanning electron microscope) investigations indicated that the crystalline state of Bi2-xSbxTe3 films transformed from equiaxed crystal to dendritic crystal with the negative shift of deposition potential. XRD and EDS were used to characterize the structure and composition of the electrodeposited films. The Seebeck coefficient and the temperature dependence of the resistance of Bi2-xSbxTe3 films were measured. The results showed that the composition of the film electrodeposited at -0.5 V is Bi2-xSbxTe3 with the largest Seebeck coefficient of 213 μV·K^-1.
文摘Pd-Ni coating shows good corrosion resistance in strong corrosion environments.However,in complex aggressiveenvironments,the performance of the coatings is limited and further improvement is necessary.The effects of the applied platingcurrent density on the composition,structure and properties of Pd-Ni coatings were studied.By changing the current density in thesame bath,multi-layer Pd-Ni coatings were prepared on316L stainless steel.Scanning electronic microscopy,weight loss tests,adhesion strength,porosity and electrochemical methods were used to study the corrosion resistance of the films prepared bydifferent coating methods.Compared with the single layer Pd-Ni coating,the multi-layer coatings showed higher microhardness,lower internal stress,lower porosity and higher adhesive strength.The multi-layer Pd-Ni coating showed obviously better corrosionresistance in hot sulfuric acid solution containing Cl-.