SARS-CoV-2(COVID-19) has been affecting the world for more than one year.The appearance of the new coronavirus variants makes the current situation full of uncertainty.In this respect,the authors discuss the connectio...SARS-CoV-2(COVID-19) has been affecting the world for more than one year.The appearance of the new coronavirus variants makes the current situation full of uncertainty.In this respect,the authors discuss the connection between virus mutation and atmospheric factors.Based on the process of nitrogen fixation and transformation of nitrate inside the human body,the authors propose that the new coronavirus variants might be related to lightning and seawater intrusion.This study provides a new perspective in terms of the possible mechanism underlying the emergence of new coronavirus variants.展开更多
The behaviors of creeping streamer progressed in the narrow gap with the range of 0.1 mm to 0.2 mm between the pressboard mounted a BSE (back side electrode) and the acrylic resin plate were carried out in PFAE (pa...The behaviors of creeping streamer progressed in the narrow gap with the range of 0.1 mm to 0.2 mm between the pressboard mounted a BSE (back side electrode) and the acrylic resin plate were carried out in PFAE (palm fatty acid ester) oil under variable impulse voltage up to -4-140 kVpeak with +1.2/50 μs and ±1.2/1,000μs waveforms. The growth of positive and negative streamers depends on the gap space between two solid dielectrics. And the distinctive polarities of impulse voltage affect in the streamer length and flashover voltage between needle and counter electrodes as well. By decreasing the gap space, the flashover voltage largely increased while the mean velocity of positive streamer significantly decreased under the both polarities of impulse voltage. These results have been compared to commercial mineral oil (transformer oil: JIS-C2320). It is shown that the behaviors of creeping discharge in both oils elegantly reveal the distinctive phenomena.展开更多
Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System...Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.展开更多
Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field informa...Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke.展开更多
文摘SARS-CoV-2(COVID-19) has been affecting the world for more than one year.The appearance of the new coronavirus variants makes the current situation full of uncertainty.In this respect,the authors discuss the connection between virus mutation and atmospheric factors.Based on the process of nitrogen fixation and transformation of nitrate inside the human body,the authors propose that the new coronavirus variants might be related to lightning and seawater intrusion.This study provides a new perspective in terms of the possible mechanism underlying the emergence of new coronavirus variants.
文摘The behaviors of creeping streamer progressed in the narrow gap with the range of 0.1 mm to 0.2 mm between the pressboard mounted a BSE (back side electrode) and the acrylic resin plate were carried out in PFAE (palm fatty acid ester) oil under variable impulse voltage up to -4-140 kVpeak with +1.2/50 μs and ±1.2/1,000μs waveforms. The growth of positive and negative streamers depends on the gap space between two solid dielectrics. And the distinctive polarities of impulse voltage affect in the streamer length and flashover voltage between needle and counter electrodes as well. By decreasing the gap space, the flashover voltage largely increased while the mean velocity of positive streamer significantly decreased under the both polarities of impulse voltage. These results have been compared to commercial mineral oil (transformer oil: JIS-C2320). It is shown that the behaviors of creeping discharge in both oils elegantly reveal the distinctive phenomena.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05100503)the National Natural Science Foundation of China(Grant Nos.40775083,40825016,and 41021004)the China Meteorological Administration special funding inatmospheric science(Grant No.GYHY200906020)
文摘Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.
基金supported by the National Natural Science Foundations of China (Grants Nos. 11475139, 11365019 & 11605108)the Gansu Provincial Science and Technology Program (Grant No. 1506RJZA119)
文摘Using the optical images of a cloud-to-ground lightning flash with multiple grounding points obtained by a highspeed video system in the Qinghai Province of China along with synchronous radiated electric field information, the propagation characteristic and the electric field change features of the leaders and the grounding behavior of discharge channels are analyzed.In addition, the two-dimensional velocity of the leader was estimated and its correlation with the time interval of the corresponding subsequent return stroke, and that with the peak current of return stroke are investigated. The results show that the average distance between the three obvious grounded points of the first return stroke channel is about 512.7 m, and the average time interval between the pulses of the corresponding electric field fast changes is 3.8 μs. Further, the average time interval between electric field pulses from the stepped leader is smaller than that of normal single grounding lightning. The observed lightning in our study has two main channels, namely the left and right channels. Based on our observations, it is clear that the dart leader comes close to the ground in case of the left channel after the first return stroke, but it fails to form a return stroke.However, the right channel exhibits a relatively rare phenomenon in that the subsequent return stroke R2 occurred about 2.1 ms after the dart leader arrived at the ground, which was unusually long; this phenomenon might be attributed to the strong discharge of the first return stroke and insufficient charge accumulation near the grounded point in a timely manner. The two-dimensional velocities for the stepped leader of the two main channels are about 1.23×105 and 1.16×105 m s-1, respectively. A sub-branch of stepped leader for the left channel fails to reach the ground and develops into an attempt leader eventually; this might be attributed to the fact that the main branch connects considerably many sub-branches, which leads to the instantaneous decline of the potential difference between the sub-branch and ground. Furthermore, it might also be because the propagation direction of this sub-branch is almost perpendicular to the atmospheric electric field direction, which is not conducive to charge transfer. The two-dimensional velocities for the dart leaders of five subsequent return strokes are all in the normal range, and they positively correlate with the peak current of the subsequent return stroke.