The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different M...The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different Mn-O bond lengths indicate that there is a strong Jahn-Teller distortion of the MnO6 octahedron, which associates with a structural phase transition from cubic symmetry (Pm3m) to tetragonal symmetry (I4/mcm), and the Jahn- Teller ordering stabilizes a chain like (C-type) antiferromagnetie ground state. The electronic structures indicate that SrMnO3 and Sr1-xCexMnO3 (z=0.125 and 0.25) are semiconductor and metallic, respectively. The doping of SrMnO3 with cerium induces simultaneously a decrease in the electrical resistivity, which can be attributed to the formation of Mn3+ as a result of charge compensation. The density of states and charge density map present that hybridization exists between some of O bands with those of Mn and Ce bands, the bonding between Sr and O is mainly ionic. Density of states and magnetic moment calculations show that the formal valence state of the Ce ion is trivalence.展开更多
Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide...Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5%,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they ...To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
文摘The electronic and magnetic properties of Ce doped SrMnO3 have been investigated us- ing the pseudo-potential plane wave method within the generalized gradient approximation method by first principles. The different Mn-O bond lengths indicate that there is a strong Jahn-Teller distortion of the MnO6 octahedron, which associates with a structural phase transition from cubic symmetry (Pm3m) to tetragonal symmetry (I4/mcm), and the Jahn- Teller ordering stabilizes a chain like (C-type) antiferromagnetie ground state. The electronic structures indicate that SrMnO3 and Sr1-xCexMnO3 (z=0.125 and 0.25) are semiconductor and metallic, respectively. The doping of SrMnO3 with cerium induces simultaneously a decrease in the electrical resistivity, which can be attributed to the formation of Mn3+ as a result of charge compensation. The density of states and charge density map present that hybridization exists between some of O bands with those of Mn and Ce bands, the bonding between Sr and O is mainly ionic. Density of states and magnetic moment calculations show that the formal valence state of the Ce ion is trivalence.
基金supports for this work,provided by the Natural Science Foundation of Jiangsu Province (No. BK2009095)the National Natural Science Foundation of China (No. 51004102)+1 种基金the National Science & Technology Support Project of the 11th Five-Year Plan of China (No. 2007Bak24B03)the State Basic Research and Development Program of China (No. 2007CB209400)
文摘Fault fracture zones and water-bearing bodies in front of the driving head are the main disasters in mine laneways,thus it is important to perform their advanced detection and prediction in advance in order to provide reliable technical support for the excavation.Based on the electromagnetic induction theory,we analyzed the characteristics of primary and secondary fields with a positive and negative wave form of current,proposed the fine processing of the advanced detection with variation rate of apparent resistivity and introduced in detail the computational formulae and procedures.The result of physical simulation experiments illustrate that the tectonic interface of modules can be judged by first-order rate of apparent resistivity with a boundary error of 5%,and the position of water body determined by the fine analysis method agrees well with the result of borehole drilling.This shows that in terms of distinguishing structure and aqueous anomalies,the first-order rate of apparent resistivity is more sensitive than the secondorder rate of apparent resistivity.However,some remaining problems are suggested for future solutions.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.