To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivi...To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivity and thickness of hardened concrete layers on the detection of target objects are explored.Both numerical simulations and indoor tank tests indicate that when the ratio method is employed to correct the original collected data,the maximum allowable error for the isolation coefficient should not exceed 1%.Notably,when the ratio of hardened layer thickness to electrode spacing does not exceed 1,correction through this method significantly enhances the recognition capability of target objects.However,when the hardened layer thickness is greater than the electrode spacing by a factor of 2 or more,the ratio method cannot achieve satisfactory results.The case study of flood control engineering detection in the Zhangxi section of the Huangpen River in Dongzhi County demonstrates that the detection effect after correction by the ratio method is comparable to that for the adjacent unhardened pavement,and the influence of the hardened layer is obviously weakened,resulting in more reliable results.展开更多
Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and f...Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.展开更多
Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic mo...Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.展开更多
Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affec...Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.展开更多
基金National Key Research and Development Program of China(No.2021YFC3000103).
文摘To reduce the shielding effect of hardened layers on electrical resistivity tomography,a ratio method based on the distortion correction principle and the isolation coefficient is proposed.The effects of the resistivity and thickness of hardened concrete layers on the detection of target objects are explored.Both numerical simulations and indoor tank tests indicate that when the ratio method is employed to correct the original collected data,the maximum allowable error for the isolation coefficient should not exceed 1%.Notably,when the ratio of hardened layer thickness to electrode spacing does not exceed 1,correction through this method significantly enhances the recognition capability of target objects.However,when the hardened layer thickness is greater than the electrode spacing by a factor of 2 or more,the ratio method cannot achieve satisfactory results.The case study of flood control engineering detection in the Zhangxi section of the Huangpen River in Dongzhi County demonstrates that the detection effect after correction by the ratio method is comparable to that for the adjacent unhardened pavement,and the influence of the hardened layer is obviously weakened,resulting in more reliable results.
基金supported by the National Natural Science Foundation of China(Nos.41564001 and 41572185)the Natural Science Foundation of Jiangxi Province(No.20151BAB203045)
文摘Small multi-turn coil devices are used with the transient electromagnetic method (TEM) in areas with limited space, particularly in underground environments such as coal mines roadways and engineering tunnels, and for detecting shallow geological targets in environmental and engineering fields. However, the equipment involved has strong mutual inductance coupling, which causes a lengthy turn-off time and a deep “blind zone”. This study proposes a new transmitter device with a conical-shape source and derives the radius formula of each coil and the mutual inductance coefficient of the cone. According to primary field characteristics, results of the two fields created, calculation of the conical-shaped source in a uniform medium using theoretical analysis, and a comparison of the inductance of the new device with that of the multi-turn coil, show that inductance of the multi-turn coil is nine times greater than that of the conical source with the same equivalent magnetic moment of 926.1 A·m2. This indicates that the new source leads to a much shallower “blind zone.” Furthermore, increasing the bottom radius and turn of the cone creates a larger mutual inductance but increasing the cone height results in a lower mutual inductance. Using the superposition principle, the primary and secondary magnetic fields for a conical source in a homogeneous medium are calculated; results indicate that the magnetic behavior of the cone is the same as that of the multi-turn coils, but the transient responses of the secondary field and the total field are more stronger than those of the multi-turn coils. To study the transient response characteristics using a cone-shaped source in a layered earth, a numerical filtering algorithm is then developed using the fast Hankel transform and the improved cosine transform, again using the superposition principle. During development, an average apparent resistivity inverted from the induced electromotive force using each coil is defined to represent the comprehensive resistivity of the conical source. To verify the forward calculation method, the transient responses of H type models and KH type models are calculated, and data are inverted using a “smoke ring” inversion. The results of inversion have good agreement with original models and show that the forward calculation method is effective. The results of this study provide an option for solving the problem of a deep “blind zone” and also provide a theoretical indicator for further research.
基金financially supported by the National Hi-tech Research and Development Program of China(863 Program)(No.2012AA09A20103)
文摘Since the ocean bottom is a sedimentary environment wherein stratification is well developed, the use of an anisotropic model is best for studying its geology. Beginning with Maxwell's equations for an anisotropic model, we introduce scalar potentials based on the divergence-free characteristic of the electric and magnetic (EM) fields. We then continue the EM fields down into the deep earth and upward into the seawater and couple them at the ocean bottom to the transmitting source. By studying both the DC apparent resistivity curves and their polar plots, we can resolve the anisotropy of the ocean bottom. Forward modeling of a high-resistivity thin layer in an anisotropic half-space demonstrates that the marine DC resistivity method in shallow water is very sensitive to the resistive reservoir but is not influenced by airwaves. As such, it is very suitable for oil and gas exploration in shallowwater areas but, to date, most modeling algorithms for studying marine DC resistivity are based on isotropic models. In this paper, we investigate one-dimensional anisotropic forward modeling for marine DC resistivity method, prove the algorithm to have high accuracy, and thus provide a theoretical basis for 2D and 3D forward modeling.
基金funded by National Natural Science Foundation of China(Grant No.51279219 and Grant No.51609027)Chongqing Research Program of Basic Research and Frontier Technology(Grant No.cstc2016jcyj A0016)
文摘Thick earth-rock filled embankment of large earthwork volume often occurs during the construction of expressways in mountainous and hilly areas. The compaction quality of earth-rock filled subgrade will directly affect the settlement deformation and stability of the embankment after filled. Therefore, effective evaluation on the compaction quality of the earth-rock filled subgrade is an unsolved critical technical issue to control the construction quality of highway engineering. Based on the wave propagation and electrical resistivity characteristics of the earth and rock fillings, a theoretical model of the compaction quality detection by wave-electric field coupling imaging diagnostic method was established. Then, two filled subgrade models containing cavities and heterogeneous bodies respectively were make separately, and by the wave velocity testing and electrical resistivity testing, the wave-electric field coupling imaging diagnostic method was applied to these two model. The result shows that it is feasible to use the wave testing technique and the electrical resistivity testing technique for a diagnostic test of the subgrade compaction quality. Based on the abnormal areas reflected by the wave velocity imaging and electrical resistivity imaging results, we are able to analyze the scope and site of distress but not able to quantitatively evaluate the subgrade compaction quality. We can accurately qualitatively analyze the subgrade compaction quality based on the wave-electric field coupling calculation model of fill subgrade quality proposed by this paper.