A complex longitudinal magnetoresistance (MR//) effect in the non-stoichiometric silver chaJcogenides (include the silver selenide and telluride) has been found, however the mechanism for the MR// effect is not cl...A complex longitudinal magnetoresistance (MR//) effect in the non-stoichiometric silver chaJcogenides (include the silver selenide and telluride) has been found, however the mechanism for the MR// effect is not clear now. In this work, a new random resistor network for MR// effect is proposed based on the experimental observation. The network is constructed from six-terminal resistor units and the mobility of carries within the network has a Gaussian distribution. Considering the non-zero transverse-longitudinal coupling in materials, the resistance matrix of the six- terminal resistor unit is modified. It is found that the material has the "chiral" transverse-longitudinal couplings, which is suggested a main reason for the complex MR//effect. The model predictions are compared with the experimental results. A three dimension (3D) visualization of current flow within the network demonstrates the "current jets" phenomenon in the thickness of materials dearly.展开更多
The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases fro...The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases from 1.74×10^(-8)mol·cm^(-2)·s^(-1) to 3.47×10^(-7)mol·cm^(-2)·s^(-1) with the decrease of the applied potential from 0.2 V to 0.1 V(vs.RHE),which is ca.one to two orders of magnitude slower than that on Pt(111)under otherwise identical condition.This is explained by the stronger binding of water to Ir(111),which needs a higher barrier to reorient during the under potential deposition of H from hydronium within the hydrogen bonded water network.In H_(2)SO_(4),the adsorption potential is ca.200 mV negatively shifted,accompanied by a decrease of adsorption rate by up to one order of magnitude,which is explained by the hindrance of the strongly adsorbed sulfate/bisulfate on Ir(111).Our results demonstrate that under electrochemical environment,H adsorption is strongly affected by the accompanying displacement and reorientation of water molecules that initially stay close to the electrode surface.展开更多
Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron ...Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.展开更多
For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 ...For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.展开更多
The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of b...The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of bacteria causing the deterioration of concrete has been linked to the generation of biogenic sulphuric and nitric acids which originate in corrosion process by dissolution of calcium containing minerals from the concrete matrices. This paper primarily focuses on the investigation of influence of sulphur-oxidising bacteria Acidithiobacillus thiooxidans and sulphate-reducing bacteria Desulfovibrio desulfuricans at the resistance degree of cement composites. Various concrete composites with 5% addition of black coal fly ash as cement replacement as well as the reference samples without coal fly ash addition were studied in the experiments environments of sewage system proceeded during 90 days. The The laboratory experiments as well as experiments in situ in real corrosion was manifested by surface changes and weight changes of cement composites samples as well as changes in pH values of leachates. Considerable surface changes were detected in all investigated samples by microscopic methods. Crystals precipitated on concrete samples surface were identified by EDX as mixture of gypsum and ettringite. The roughness increases of surface of cement microscopy. composites were determined by confocal laser scanning展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 50872038 and 10675048
文摘A complex longitudinal magnetoresistance (MR//) effect in the non-stoichiometric silver chaJcogenides (include the silver selenide and telluride) has been found, however the mechanism for the MR// effect is not clear now. In this work, a new random resistor network for MR// effect is proposed based on the experimental observation. The network is constructed from six-terminal resistor units and the mobility of carries within the network has a Gaussian distribution. Considering the non-zero transverse-longitudinal coupling in materials, the resistance matrix of the six- terminal resistor unit is modified. It is found that the material has the "chiral" transverse-longitudinal couplings, which is suggested a main reason for the complex MR//effect. The model predictions are compared with the experimental results. A three dimension (3D) visualization of current flow within the network demonstrates the "current jets" phenomenon in the thickness of materials dearly.
基金supported by the National Natural Science Foundation of China(No.91545124,No.21972131,No.21832004).
文摘The kinetics for hydrogen(H)adsorption on Ir(111)electrode has been studied in both HClO_(4) and H_(2)SO_(4) solutions by impedance spectroscopy.In HClO_(4),the adsorption rate for H adsorption on Ir(111)increases from 1.74×10^(-8)mol·cm^(-2)·s^(-1) to 3.47×10^(-7)mol·cm^(-2)·s^(-1) with the decrease of the applied potential from 0.2 V to 0.1 V(vs.RHE),which is ca.one to two orders of magnitude slower than that on Pt(111)under otherwise identical condition.This is explained by the stronger binding of water to Ir(111),which needs a higher barrier to reorient during the under potential deposition of H from hydronium within the hydrogen bonded water network.In H_(2)SO_(4),the adsorption potential is ca.200 mV negatively shifted,accompanied by a decrease of adsorption rate by up to one order of magnitude,which is explained by the hindrance of the strongly adsorbed sulfate/bisulfate on Ir(111).Our results demonstrate that under electrochemical environment,H adsorption is strongly affected by the accompanying displacement and reorientation of water molecules that initially stay close to the electrode surface.
基金Supported by the Atomic Energy of Canada Limited(AECL)and National Natural Science Foundation of China(No.51371124)
文摘Passivity degradation of Alloy 800 in simulated crevice chemistries was systematically investigated using cyclic polarization curve, electrochemical impedance spectroscopy(EIS), Mott-Schottky analysis, Auger electron spectroscopy(AES)and atomic absorption spectrometry(AAS). Cyclic polarization showed that the pitting potential in a thiosulfate solution was much lower than in either a chloride solution or a sulfate-chloride solution. Mott-Schottky results revealed that passive films showed n-type semiconductivity, and the presence of thiosulfate in chloride solution led to an increased donor density in the passive film. EIS spectra indicated that thiosulfate enhanced the film dissolution rate in chloride solutions. Moreover, thiosulfate enhanced the pitting propagation rate in chloride solution by stabilizing the metastable pits and forming sulfide within the pits.
文摘For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils, the changes in pH after the addition of different amounts of HNO_3 or H_2SO_4 to representative soils of China were measured. A difrerence between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite, but not for consted charge soils and bentonite. The larger the proportion of H_2SO_4 in the HNO_3-H_2SO_4 mixture, the lower the calculated H ̄+ ion activities remained in the suspension. The difference in H ̄+ ion activities between H_2SO_4 systems and HNO_3 systems was larger for soils with a low base-saturation (BS) percentage than those with a high BS percentage. The removal of free iron oxides from the soil led to a decrease in the difference, while the coating of Fe_2O_3 ona bentonite resulted in a remarkable appearance of the difference. The effect of ligand exchange on the acidity status of the soil varied with the soil type. SurfaCe soils with a hash organic matter content showed a less pronounced effect of ligand exchange than subsoils did. It was estimated that when acid rain chiefly containing H_2SO_4 was deposited on variable charge soils the acidilication rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO_3 for soils with a high organic matter content, and that the rate might be half of that caused by HNO_3 for soils with a low organic matter content, especially for latosols.
文摘The start and the course of bio-corrosion are conditioned by many factors which include biological effects like the influence of vegetation and microorganisms causing the deterioration of materials. The influence of bacteria causing the deterioration of concrete has been linked to the generation of biogenic sulphuric and nitric acids which originate in corrosion process by dissolution of calcium containing minerals from the concrete matrices. This paper primarily focuses on the investigation of influence of sulphur-oxidising bacteria Acidithiobacillus thiooxidans and sulphate-reducing bacteria Desulfovibrio desulfuricans at the resistance degree of cement composites. Various concrete composites with 5% addition of black coal fly ash as cement replacement as well as the reference samples without coal fly ash addition were studied in the experiments environments of sewage system proceeded during 90 days. The The laboratory experiments as well as experiments in situ in real corrosion was manifested by surface changes and weight changes of cement composites samples as well as changes in pH values of leachates. Considerable surface changes were detected in all investigated samples by microscopic methods. Crystals precipitated on concrete samples surface were identified by EDX as mixture of gypsum and ettringite. The roughness increases of surface of cement microscopy. composites were determined by confocal laser scanning