In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)...In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.展开更多
Adsorption experiment from aqueous solutions containing known amount of Cr (chromium) using chitosan was explored to evaluate the efficiency of chitosan as sorbent for Cr. Some variable parameters such as pH, reacti...Adsorption experiment from aqueous solutions containing known amount of Cr (chromium) using chitosan was explored to evaluate the efficiency of chitosan as sorbent for Cr. Some variable parameters such as pH, reaction time and chitosan dosage were optimized. Under the optimum experiment condition, the effect of common ions on the adsorption of Cr (i.e., Na^+, K^+, Mg^2+, Ca^2+ for Cr(Ⅲ), and Cl^-, NO3^-, SO4^2- for Cr(Ⅵ)) was also investigated. Furthermore, the sorption mechanism of Cr by chitosan was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, to confirm the characteristics of the chitosan, the surface morphology of the biomass was determined by SEM (scanning electron microscope) and specific surface area analyzer (N2-BET (Brunaeur, Emmet and Teller)). Consequently, the following matters have been mainly clarified: (1) chitosan can be an efficient sorbent for Cr (both Cr(Ⅲ) and Cr(Ⅵ)); (2) the effect of common ions on the adsorption ofCr (Cr(Ⅲ) and Cr(Ⅵ)) was not significant under this experimental conditions; (3) adsorption isotherms using the chitosan can be generally described by Langmuir isotherm more satisfactorily for Cr. The adsorption may have occurred mainly by monolayer reaction; (4) the rates of adsorption were found to conform to pseudo-second order kinetics.展开更多
The mechanism of the conversion of titanate nanotubes into nanoribbons is of considerable interest.The details of the transformation processes involved when nanoribbons are produced from a P25 TiO 2 powder precursor b...The mechanism of the conversion of titanate nanotubes into nanoribbons is of considerable interest.The details of the transformation processes involved when nanoribbons are produced from a P25 TiO 2 powder precursor by alkaline hydrothermal treatment have been investigated systematically by transmission electron microscopy.A multistep attachment model is proposed for the growth at the early stage of coarsening.The treatment duration has a strong effect on the change in product morphology from hollow nanotubes into nanoribbons,since the nanotubes cannot retain their morphology in the strong alkaline solution for extended periods of time.Most of the nanotubes were etched and dissolved,providing the nutrients for subsequent nanoribbon growth.Some stable nanotubes grew spirally internally to form nanowires or became connected together to form rafts which acted as the grains for nanoribbon growth.With increasing hydrothermal time,a large number of nanotubes and other fragments became attached to the grains which began to grow larger and eventually formed the nanoribbons,in a process in which the stepped faces and kinked faces became fused and were eliminated while the flat faces were retained in the nanoribbon morphology.展开更多
文摘In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4^(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4^(2-), SeO_3^(2-), and AsO_4^-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L^(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R^2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R^2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g^(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.
文摘Adsorption experiment from aqueous solutions containing known amount of Cr (chromium) using chitosan was explored to evaluate the efficiency of chitosan as sorbent for Cr. Some variable parameters such as pH, reaction time and chitosan dosage were optimized. Under the optimum experiment condition, the effect of common ions on the adsorption of Cr (i.e., Na^+, K^+, Mg^2+, Ca^2+ for Cr(Ⅲ), and Cl^-, NO3^-, SO4^2- for Cr(Ⅵ)) was also investigated. Furthermore, the sorption mechanism of Cr by chitosan was investigated by applying Langmuir and Freundlich isotherm equations to the data obtained. In addition, to confirm the characteristics of the chitosan, the surface morphology of the biomass was determined by SEM (scanning electron microscope) and specific surface area analyzer (N2-BET (Brunaeur, Emmet and Teller)). Consequently, the following matters have been mainly clarified: (1) chitosan can be an efficient sorbent for Cr (both Cr(Ⅲ) and Cr(Ⅵ)); (2) the effect of common ions on the adsorption ofCr (Cr(Ⅲ) and Cr(Ⅵ)) was not significant under this experimental conditions; (3) adsorption isotherms using the chitosan can be generally described by Langmuir isotherm more satisfactorily for Cr. The adsorption may have occurred mainly by monolayer reaction; (4) the rates of adsorption were found to conform to pseudo-second order kinetics.
基金supported by the National Basic Research Program of China (2011CBA00700)the National High Technology Research and Development Program of China (2009AA050603 and 2011AA050527)Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (KGCX2-YW-326)
文摘The mechanism of the conversion of titanate nanotubes into nanoribbons is of considerable interest.The details of the transformation processes involved when nanoribbons are produced from a P25 TiO 2 powder precursor by alkaline hydrothermal treatment have been investigated systematically by transmission electron microscopy.A multistep attachment model is proposed for the growth at the early stage of coarsening.The treatment duration has a strong effect on the change in product morphology from hollow nanotubes into nanoribbons,since the nanotubes cannot retain their morphology in the strong alkaline solution for extended periods of time.Most of the nanotubes were etched and dissolved,providing the nutrients for subsequent nanoribbon growth.Some stable nanotubes grew spirally internally to form nanowires or became connected together to form rafts which acted as the grains for nanoribbon growth.With increasing hydrothermal time,a large number of nanotubes and other fragments became attached to the grains which began to grow larger and eventually formed the nanoribbons,in a process in which the stepped faces and kinked faces became fused and were eliminated while the flat faces were retained in the nanoribbon morphology.