Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planner...Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.展开更多
The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and f...The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.展开更多
A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to impro...A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.展开更多
This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage cu...This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage current. The 16× 16 bit parallel multiplier is designed with the proposed technology. Comparing with the previous MCML circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/258. This circuit is designed with Samsung 0.35 um complementary metal oxide semiconductor (CMOS) process. The validity and effectiveness are verified through the HSPICE simulation.展开更多
This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, o...This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, operation and break processes are studied when the converters are switched off as well as when they are switched on in current limitation mode. Then, a comparative analysis of the results in the two operation modes is done.展开更多
文摘Finding an optimal trajectory from an initial point to a final point through closely packed obstacles, and controlling a Hilare robot through this trajectory, are challenging tasks. To serve this purpose, path planners and trajectory-tracking controllers are usually included in a control loop. This paper highlights the implementation of a trajectory-tracking controller on a stepper motor-driven Hilare robot, with a trajectory that is described as a set of waypoints. The controller was designed to handle discrete waypoints with directional discontinuity and to consider different constraints on the actuator velocity. The control parameters were tuned with the help of multi-objective particle swarm optimization to minimize the average cross-track error and average linear velocity error of the mobile robot when tracking a predefined trajectory. Experiments were conducted to control the mobile robot from a start position to a destination position along a trajectory described by the waypoints. Experimental results for tracking the trajectory generated by a path planner and the trajectory specified by a user are also demonstrated. Experiments conducted on the mobile robot validate the effectiveness of the proposed strategy for tracking different types of trajectories.
基金Supported by the National High Technology Research and Development Program of China(No.SQ2010AA0401265006)
文摘The control of nuclear fuel manipulator crane (MC) drive system is essential for its running and other systems are designed surrounding the drive system.This paper gives a brief introduction to the composition and function of MC,analyses its drive mode and control method and applies PLC to control its frequency transducer directly to help the motor work more stable.Based on the control requirements of bridge,trolley,Hoist,the control system of bridge applies a drive mode with 2-drag2 drive model on both sides and a multi-control method to realize simultaneous runningof two sides,1-drag-1 model on through-going axes and closed loop control method finish the precise location of trolley,and the using of 1-drag-1 model drive mode and closed loop control method solves the protect control difficulty of hoist which stops/starts repeatedly and changes speed.
基金Project(51175015)supported by the National Natural Science Foundation of ChinaProject(2012AA110904)supported by the National High Technology Research and Development Program of China
文摘A control allocation algorithm based on pseudo-inverse method was proposed for the over-actuated system of four in-wheel motors independently driving and four-wheel steering-by-wire electric vehicles in order to improve the vehicle stability. The control algorithm was developed using a two-degree-of-freedom(DOF) vehicle model. A pseudo control vector was calculated by a sliding mode controller to minimize the difference between the desired and actual vehicle motions. A pseudo-inverse controller then allocated the control inputs which included driving torques and steering angles of the four wheels according to the pseudo control vector. If one or more actuators were saturated or in a failure state, the control inputs are re-allocated by the algorithm. The algorithm was evaluated in Matlab/Simulink by using an 8-DOF nonlinear vehicle model. Simulations of sinusoidal input maneuver and double lane change maneuver were executed and the results were compared with those for a sliding mode control. The simulation results show that the vehicle controlled by the control allocation algorithm has better stability and trajectory-tracking performance than the vehicle controlled by the sliding mode control. The vehicle controlled by the control allocation algorithm still has good handling and stability when one or more actuators are saturated or in a failure situation.
文摘This paper proposes a low-power MOS current mode logic (MCML) circuit with sleep-transistor to reduce the leakage current. The sleep-transistor is used to high-threshold voltage transistor to minimize the leakage current. The 16× 16 bit parallel multiplier is designed with the proposed technology. Comparing with the previous MCML circuit, the circuit achieves the reduction of the power consumption in sleep mode by 1/258. This circuit is designed with Samsung 0.35 um complementary metal oxide semiconductor (CMOS) process. The validity and effectiveness are verified through the HSPICE simulation.
文摘This paper presents an electric drive system whose motor is connected to a battery by means of a buck DC/DC converter. This motor is further connected to an ultracapacitor by means of a boost DC/DC converter. First, operation and break processes are studied when the converters are switched off as well as when they are switched on in current limitation mode. Then, a comparative analysis of the results in the two operation modes is done.