期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
也谈光电耦合器
1
作者 祝敏 《电子制作》 2004年第3期52-53,共2页
光电耦合器是以光为媒介传输电信号的一种电-光-电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端。常见的发光源为发光二极... 光电耦合器是以光为媒介传输电信号的一种电-光-电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端。常见的发光源为发光二极管。受光器为光敏二极管、光敏三极管等等。光电耦合器的种类较多。 展开更多
关键词 耦合器 电-光-电转换器件 二极管 共模抑制比 测试
下载PDF
CsPbBrI perovskites with low energy loss for high-performance indoor and outdoor photovoltaics 被引量:5
2
作者 Kai-Li Wang Xiao-Mei Li +2 位作者 Yan-Hui Lou Meng Li Zhao-Kui Wang 《Science Bulletin》 SCIE EI CSCD 2021年第4期347-353,M0004,共8页
Over the years,the efficiency of inorganic perovskite solar cells(PSCs)has increased at an unprecedented pace.However,energy loss in the device has limited a further increase in efficiency and commercialization.In thi... Over the years,the efficiency of inorganic perovskite solar cells(PSCs)has increased at an unprecedented pace.However,energy loss in the device has limited a further increase in efficiency and commercialization.In this work,we used(NH4)2C2O4·H2O to treat CsPbBrI2 perovskite film during spin-coating.The CsPbBrI2 underwent secondary crystallization to form high quality films with micrometer-scale and low trap density.(NH4)2C2O4·H2O treatment promoted charge transfer capacity and reduced the ideal factor.It also dropped the energy loss from 0.80 to 0.64 eV.The resulting device delivered a power conversion efficiency(PCE)of 16.55%with an open-circuit voltage(Voc)of 1.24 V,which are largely improved compared with the reference device which exhibited a PCE of 13.27%and a Voc of 1.10 V.In addition,the optimized treated device presented a record indoor PCE of 28.48%under a fluorescent lamp of 1000 lux,better than that of the reference device(19.05%). 展开更多
关键词 Perovskite solar cells Energy loss Indoor light Carrier dynamics Grain size
原文传递
Furan-based liquid-crystalline small-molecule donor guest improving the photovoltaic performance of organic solar cells with amorphous packing 被引量:1
3
作者 Yuchen Yue Bing Zheng +4 位作者 Mengdi Liu Yujie Chen Lijun Huo Jingxia Wang Lei Jiang 《Science China Materials》 SCIE EI CAS CSCD 2022年第12期3402-3410,共9页
Introducing liquid-crystalline small-molecule donors(SMDs)into binary systems based on the strong intermolecular interactions of SMDs is a facile and effective strategy to tune the active layer morphology and improve ... Introducing liquid-crystalline small-molecule donors(SMDs)into binary systems based on the strong intermolecular interactions of SMDs is a facile and effective strategy to tune the active layer morphology and improve the performance of organic solar cells(OSCs).Contrary to conventional understanding,this research proposes a new strategy for ternary OSCs implicating that"weakly crystalline materials can also optimize the morphology of the active layer and improve the OSCs performance".Herein,we designed and synthesized two liquid-crystalline SMDs,Z1 and Z2,based on benzodifuran(BDF)units.The amorphous Z2-incorporated ternary devices present an unexpectedly improved power conversion efficiency(PCE)>18%with good stability.By contrast,the highly ordered Z1-based ternary devices possess a significantly depressed efficiency.Multiple characterizations reveal that the Z2-based ternary blend films possess improved miscibility and efficient charge transport.This novel strategy for the selection of the third component is significant for the fabrication of high-efficiency ternary OSCs. 展开更多
关键词 small-molecule donor organic solar cells liquid crystal active layer morphology
原文传递
Effect of annealing treatment on the performance of organic photovoltaic devices using SPFGraphene as electron-accepter material
4
作者 WANG HaiTeng HE DaWei WANG YongSheng LIU ZhiYong WU HongPeng WANG JiGang ZHAO Yu 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第8期1356-1361,共6页
We have researched the performances of organic photovoltaic devices with the bulk heterojunction (BHJ) structure using the organic solution-processable functionalized graphene (SPFGraphene) material as the electro... We have researched the performances of organic photovoltaic devices with the bulk heterojunction (BHJ) structure using the organic solution-processable functionalized graphene (SPFGraphene) material as the electron-accepter material and P3OT as the donor material. The structural configuration of the device is ITO/PEDOT:PSS/P3OT:PCBM-SPFGraphene/LiF/A1. Given the P3OT/PCBM (1:1) mixture with 8wt% of SPFGraphene, the open-circuit voltage (Voc) of the device reaches 0.64 V, a short-circuit current density (J^c) reaches 5.7 mA/cm2, a fill factor (FF) reaches 0.42, and the power conversion efficiency (7?) reaches 1.53% at illumination at 100 mW/cm2 AM1.5. We further studied the reason for the device performances improvement In the P3OT:PCBM-SPFGraphene composite, the SPFGraphene material acts as exciton dissociation sites and provides the transport pathways of the lowest unoccupied molecular orbital (LUMO)-SPFGraphene-A1. Furthermore, adding SPFGraphene to P3OT results in appropriate energetic distance between the highest occupied molecular orbital (HOMO) and LUMO of the donoffacceptor and provides higher exciton dissociation volume mobility of carrier transport. We have researched the effect of annealing treatment for the devices and found that the devices with annealing treatment at 180℃ show better performances compared with devices without annealed treatment. The devices with annealed treatment show the best performance, with an enhancement of the power conversion efficiency from 1.53% to 1.75%. 展开更多
关键词 SPFGraphene P3OT HOMO LUMO
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部