Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. ...Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.展开更多
The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination b...The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.展开更多
Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To red...Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To reduce energy consumption and improve energy utilization efficiency,highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER.Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties.Reasonable interface modulation can optimize intermediate active species’adsorption energy,improve catalytic active sites’selectivity,and enhance intrinsic catalytic activity.Here,we provided an overview of the latest advancement in interface engineering for efficient HER catalysts.We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER.Then,we analyze and discuss current regulating principles in interface engineering for HER catalysts,focusing particularly on optimizing electron structures and modulating microenvironment reactions.Finally,the challenges and further prospects of interface catalysts for future applications are discussed.展开更多
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi...It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.展开更多
基金Project (B2011203074) supported by the Natural Science Foundation of Hebei Province, ChinaProject (201101A129) supported by the Technology Research and Development Program of Qinhuangdao, Hebei Province, China
文摘Hydrogen storage composite alloy Ti0.10Zr0.15V0.35Cr0.10Ni0.30–10% LaNi3 was prepared by two-step arc-melting to improve the electro-catalytic activity and the kinetic performance of Ti-V-based solid solution alloy. The electrochemical properties and synergetic effect of the composite alloy electrode were systematically investigated by using X-ray diffractometry, field emission scanning electron microscopy, energy-dispersive spectrometry, electrochemical impedance spectroscopy and galvanostatic charge/discharge test. It is found that the main phase of the composite alloy is composed of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure, while the secondary phase is formed in the composite alloy. The comprehensive electrochemical properties of the composite alloy electrode are significantly improved. The activation cycle number, the maximum discharge capacity and the low temperature dischargeability of the composite alloy are 5 cycles, 362.5 mA-h/g and 65.84% at 233 K, respectively. It is suggested that distinct synergetic effect occurs in the activation process, composite process, cyclic process and discharge process at a low or high temperature under different current densities, in the charge–transfer resistance and exchange current density.
文摘The development of efficient and stable non-mercury catalysts for the chlor-alkali industry is desirable but remains a great challenge.Herein,we design a series of ruthenium catalysts for acetylene hydrochlorination by regulating the electronic structure of ruthenium ions through coordination with various ligands(thiourea,phenanthroline,and L-lactic).The turnover frequencies(TOFs)and apparent activation energies for the acetylene hydrochlorination have a linear relationship with the binding energy of Ru3+in the ruthenium catalysts.The synergetic effect of the ruthenium ion and ligands plays an important role in acetylene hydrochlorination.The Ru-Thi/AC catalyst with thiourea as the ligand shows the highest TOF and stability in acetylene hydrochlorination.The present study provides a rational method to regulate the electronic structure of supported metal catalysts with high catalytic performance exhibited by the carbon-supported heterogeneous catalysts.
文摘Developing efficient,stable,and low-cost electrocatalysts toward alkaline hydrogen evolution reactions(HER)in water electrolysis driven by renewable energy sources has always been discussed over the past decade.To reduce energy consumption and improve energy utilization efficiency,highly active electrocatalytic electrodes are essential for lowering the energy barrier of the HER.Catalysts featuring multiple interfaces have attracted significant research interest recently due to their enhanced physicochemical properties.Reasonable interface modulation can optimize intermediate active species’adsorption energy,improve catalytic active sites’selectivity,and enhance intrinsic catalytic activity.Here,we provided an overview of the latest advancement in interface engineering for efficient HER catalysts.We begin with a brief introduction to the fundamental concepts and mechanisms of alkaline HER.Then,we analyze and discuss current regulating principles in interface engineering for HER catalysts,focusing particularly on optimizing electron structures and modulating microenvironment reactions.Finally,the challenges and further prospects of interface catalysts for future applications are discussed.
基金the National Natural Science Foundation of China(21671096,21603094 and21905180)the Natural Science Foundation of Guangdong Province(2018B030322001 and 2018A030310225)+4 种基金Shenzhen Peacock Plan(KQTD2016022620054656)Shenzhen Key Laboratory Project(ZDSYS201603311013489)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(JCYJ20190809115413414)the Science and Technology Development Fund from Macao SAR(FDCT–0102/2019/A2,FDCT–0035/2019/AGJ and FDCT–0154/2019/A3)the Multi-Year Research Grants(MYRG2017–00027–FST and MYRG2018–00003–IAPME)from the University of Macao。
文摘It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.