An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variati...An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.展开更多
Bi0.9La0.1Fe0.95Mn0.05O3 (BLFMO) ferroelectric thin films were fabricated on Pt/Ti/SiO2/Si/ substrates by the sol-gel process at different pyrolysis temperatures. The mass loss of BLFMO powder was investigated by th...Bi0.9La0.1Fe0.95Mn0.05O3 (BLFMO) ferroelectric thin films were fabricated on Pt/Ti/SiO2/Si/ substrates by the sol-gel process at different pyrolysis temperatures. The mass loss of BLFMO powder was investigated by thermo gravimetry analyser (TGA), and the polycrystalline structure and smooth surface of BLFMO thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The remnant polarization (Pr) of the BLFMO films pyrolyzed at 420 ℃ is 21.2 μC/cm2 at the coercive field (Ec) of 99 kV/cm and the leakage current density is 7.1×10-3 A/cm2, which indicates that the BLFMO thin films display relatively good ferroelectric property at this temperature.展开更多
Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used...Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used to highlight the precipitation sequence and to calculate the stored energy,recrystallization temperature and activation energy after each ECAP pass.On another hand,electrical properties were correlated with the dislocation density.Results show that the stored energy increases upon increasing ECAP pass numbers,while the recrystallization temperature decreases significantly.展开更多
The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, suc...The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.展开更多
A novel analytical method with the guarded-hot-box (GHB) in investigating the thermal resistance of heat-resistant fabrics is described and the analytical method is also presented in this paper. The new apparatus is...A novel analytical method with the guarded-hot-box (GHB) in investigating the thermal resistance of heat-resistant fabrics is described and the analytical method is also presented in this paper. The new apparatus is capable of measure thermal resistance of the fabrics in high temperature up to an average applied temperature of 250~C. The maximum measurement error of the apparatus is 6.5% and relative error is less than 2.8% between the introduced method and standard given value. In the G/-IB method, air layer thickness is the most important factor that influences measurement value of thermal resistance of heat-resistant fabrics. Results show that the method is more accurate and efficient than GBl1048-89 one in measuring thermal resistance of heat-resistant fabrics.展开更多
The time-optimal trajectory planning is proposed under kinematic and dynamic constraints for a 2-DOF wheeled robot. In order to make full use of the motor’s capacity, we calculate the maximum torque and the minimum t...The time-optimal trajectory planning is proposed under kinematic and dynamic constraints for a 2-DOF wheeled robot. In order to make full use of the motor’s capacity, we calculate the maximum torque and the minimum torque by considering the maximum heat-converted power generated by the DC motor. The shortest path is planned by using the geometric method under kinematic constraints. Under the bound torques, the velocity limits and the maximum acceleration (deceleration) are obtained by combining with the dynamics. We utilize the phase-plane analysis technique to generate the time optimal trajectory based on the shortest path. At last, the computer simulations for our laboratory mobile robot were performed. The simulation results prove the proposed method is simple and effective for practical use.展开更多
To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they ...To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.展开更多
As a driving motor, surface mounted permanent magnet synchronous motor exhibits high efficiency and high power density. However, it is susceptible to suffer irreversible demagnetization and insulation failure of coils...As a driving motor, surface mounted permanent magnet synchronous motor exhibits high efficiency and high power density. However, it is susceptible to suffer irreversible demagnetization and insulation failure of coils under severe thermal load condition. Therefore, it is essential to predict temperattrre distribution in the driving motor. In this paper, a lumped parameter thermal mode/of surface mounted permanent magnet is investigated. By using finite element method, the iron loss distribution in various parts of the driving motor is achieved. Moreover, the influences of interface gap and flow rate on temperature distribution are discussed. Finally, the simulation of temperature distribution in different parts of the driving motor is achieved. The presented methodology contributes to verify the feasibility of the driving motor design.展开更多
Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).H...Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.展开更多
Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the pro...Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.展开更多
文摘An optimal design method for an aircraft low-power thermoelectric refrigeration system(TRS)is proposed using an existing experimental model as the research platform under given aircraft flight conditions.The variation curves of the cooling capacities and the refrigeration coefficients of the system running at three flight altitudes are investigated.The performance of the system is evaluated by the minimum-entropy-generation method and the performance penalty is also calculated.The power variation curves of the cooling system are obtained by an electric power experiment.The peak values of these curves are less than the maximal electric power supply of airborne equipment,proving that the use of the low-power TRS for airborne equipment is feasible.The COP,cooling capacity and entropy generation of the system are relative to the flight altitude and the current of the TRS.Through the analyses of these data,the optimal values of the COP are obtained,and the optimization measures are proposed to maximize the use of the advantages of the TRS.
基金Project (11032010) supported by Key Project of National Natural Science Foundation of ChinaProjects (51072171, 61274107, 61176093, 11275163) supported by the National Natural Science Foundation of China+3 种基金Project (IRT1080) supported by Program for Changjiang Scholars and Innovation Research Team in UniversityProject (2012CB326404) supported by National Basic Research Program of ChinaProject (CX2011B248) supported by Hunan Provincial Innovation Foundation for PostgraduateProject (20104301110001) supported by the Doctoral Program of Higher Education of China
文摘Bi0.9La0.1Fe0.95Mn0.05O3 (BLFMO) ferroelectric thin films were fabricated on Pt/Ti/SiO2/Si/ substrates by the sol-gel process at different pyrolysis temperatures. The mass loss of BLFMO powder was investigated by thermo gravimetry analyser (TGA), and the polycrystalline structure and smooth surface of BLFMO thin films were characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM), respectively. The remnant polarization (Pr) of the BLFMO films pyrolyzed at 420 ℃ is 21.2 μC/cm2 at the coercive field (Ec) of 99 kV/cm and the leakage current density is 7.1×10-3 A/cm2, which indicates that the BLFMO thin films display relatively good ferroelectric property at this temperature.
文摘Samples of a commercial Cu-lCr-0.1Zr(mass fraction,%) alloy were subjected to equal channel angular pressing(ECAP) up to 16 passes at room temperature following route Bc.Differential scanning calorimetry(DSC) was used to highlight the precipitation sequence and to calculate the stored energy,recrystallization temperature and activation energy after each ECAP pass.On another hand,electrical properties were correlated with the dislocation density.Results show that the stored energy increases upon increasing ECAP pass numbers,while the recrystallization temperature decreases significantly.
文摘The heated process of raw materials for electron trapping materials (ETM) is investigated by thermo-analysis method. The temperature ranges of raw materials experienced some physical and chemical change processes, such as dehydration, organic solvent removal, crystal sulphur burning, oxidation of alkaline earth sulfides and solid phase reaction (rare earth doped) and so on, are obtained. The experimental results also show that the presence of trace oxygen in shielded gas is very harmful to prepare the ETM.The raw material thermo-analysis results provide very important experimental reference for optimizing the ETM preparation techniques.
基金Supported by Foundation of Innovation Fund of Doctoral Thesis(No.107 06 0019015)
文摘A novel analytical method with the guarded-hot-box (GHB) in investigating the thermal resistance of heat-resistant fabrics is described and the analytical method is also presented in this paper. The new apparatus is capable of measure thermal resistance of the fabrics in high temperature up to an average applied temperature of 250~C. The maximum measurement error of the apparatus is 6.5% and relative error is less than 2.8% between the introduced method and standard given value. In the G/-IB method, air layer thickness is the most important factor that influences measurement value of thermal resistance of heat-resistant fabrics. Results show that the method is more accurate and efficient than GBl1048-89 one in measuring thermal resistance of heat-resistant fabrics.
文摘The time-optimal trajectory planning is proposed under kinematic and dynamic constraints for a 2-DOF wheeled robot. In order to make full use of the motor’s capacity, we calculate the maximum torque and the minimum torque by considering the maximum heat-converted power generated by the DC motor. The shortest path is planned by using the geometric method under kinematic constraints. Under the bound torques, the velocity limits and the maximum acceleration (deceleration) are obtained by combining with the dynamics. We utilize the phase-plane analysis technique to generate the time optimal trajectory based on the shortest path. At last, the computer simulations for our laboratory mobile robot were performed. The simulation results prove the proposed method is simple and effective for practical use.
基金Project(51175518)supported by the National Natural Science Foundation of China
文摘To increase the efficiency and reliability of the thermodynamics analysis of the hydraulic system, the method based on pseudo-bond graph is introduced. According to the working mechanism of hydraulic components, they can be separated into two categories: capacitive components and resistive components. Then, the thermal-hydraulic pseudo-bond graphs of capacitive C element and resistance R element were developed, based on the conservation of mass and energy. Subsequently, the connection rule for the pseudo-bond graph elements and the method to construct the complete thermal-hydraulic system model were proposed. On the basis of heat transfer analysis of a typical hydraulic circuit containing a piston pump, the lumped parameter mathematical model of the system was given. The good agreement between the simulation results and experimental data demonstrates the validity of the modeling method.
文摘As a driving motor, surface mounted permanent magnet synchronous motor exhibits high efficiency and high power density. However, it is susceptible to suffer irreversible demagnetization and insulation failure of coils under severe thermal load condition. Therefore, it is essential to predict temperattrre distribution in the driving motor. In this paper, a lumped parameter thermal mode/of surface mounted permanent magnet is investigated. By using finite element method, the iron loss distribution in various parts of the driving motor is achieved. Moreover, the influences of interface gap and flow rate on temperature distribution are discussed. Finally, the simulation of temperature distribution in different parts of the driving motor is achieved. The presented methodology contributes to verify the feasibility of the driving motor design.
基金Supported by Hong Kong Research Grant Council(PolyU 5238/11E)
文摘Thermodynamic analyses in the literature have shown that solid oxide fuel cells(SOFCs) with proton conducting electrolyte(H-SOFC) exhibited higher performance than SOFC with oxygen ion conducting electrolyte(O-SOFC).However, these studies only consider H2 electrochemical oxidation and totally neglect the contribution of CO electrochemical oxidation in O-SOFC. In this short communication, a thermodynamic model is developed to compare the theoretically maximum efficiencies of H-SOFC and O-SOFC, considering the electrochemical oxidation of CO in O-SOFC anode. It is found that O-SOFC exhibits a higher maximum efficiency than H-SOFC due to the contribution from CO electrochemical oxidation, which is contrary to the common understanding of electrolyte effect on SOFC performance. The effects of operating temperature and fuel utilization factor on the theoretical efficiency of SOFC are also analyzed and discussed.
基金The University of Ilorin,Nigeria financially supported this research through scholarship grant from Tertiary Education Trust Fund
文摘Numerous innovative heat recovery-to-power technologies have been resourcefully and technologically exploited to bridge the growing gap between energy needs and its sustainable and affordable supply.Among them,the proposed trilateral-cycle(TLC) power system exhibits high thermodynamic efficiency during heat recovery-to-power from low-to-medium temperature heat sources.The TLCs are proposed and analysed using n-pentane as working fluid for waste heat recovery-to-power generation from low-grade heat source to evaluate the thermodynamic efficiency of the cycles.Four different single stage TLC configurations with distinct working principles are modelled thermodynamically using engineering equation solver.Based on the thermodynamic framework,thermodynamic performance simulation and efficiency analysis of the cycles as well as the exergy efficiencies of the heating and condensing processes are carried out and compared in their efficiency.The results show that the simple TLC,recuperated TLC,reheat TLC and regenerative TLC operating at subcritical conditions with cycle high temperature of 473 K can attain thermal efficiencies of 21.97%,23.91%,22.07% and 22.9%,respectively.The recuperated TLC attains the highest thermodynamic efficiency at the cycle high temperature because of its lowest exergy destruction rates in the heat exchanger and condenser.The efficiency analysis carried out would assist in guiding thermodynamic process development and thermal integration of the proposed cycles.