We have found that Batroxobin plays a protective role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptoti...We have found that Batroxobin plays a protective role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptotic cells in ischemic rat brains at different reperfusion intervals were tested with method of TdT-mediated dUTP-DIG nick end labeling (TUNEL) and the effect of Batroxobin on the apoptosis of neurons was studied in left middle cerebral artery (LMCA) occlusion and reperfusion in rat models (n = 18). The results showed that few scattered apoptosis cells were observed in right cerebral hemispheres after LMCA occlusion and reperfusion, and that a lot of apoptosis cells were found in left ischemic cortex and caudoputamen at 12 h reperfusion, and they reached peak at 24 h-48 h reperfusion. However, in the rats pretreated with Batroxobin, the number of apoptosis cells in left cerebral cortex and caudoputamen reduced significantly and the neuronal damage was much milder at 24 h reperfusion than that of saline-treated rats. The results indicate that administration of Batroxobin may reduce the apoptosis of neurons induced by cerebral ischemia and reperfusion and afford significant cerebroprotection in the model of focal cerebral ischemia and reperfusion.展开更多
文摘We have found that Batroxobin plays a protective role in ischemic brain injury, which attracted us to investigate the effect of Batroxobin on apoptosis of neurons during cerebral ischemia and reperfusion. The apoptotic cells in ischemic rat brains at different reperfusion intervals were tested with method of TdT-mediated dUTP-DIG nick end labeling (TUNEL) and the effect of Batroxobin on the apoptosis of neurons was studied in left middle cerebral artery (LMCA) occlusion and reperfusion in rat models (n = 18). The results showed that few scattered apoptosis cells were observed in right cerebral hemispheres after LMCA occlusion and reperfusion, and that a lot of apoptosis cells were found in left ischemic cortex and caudoputamen at 12 h reperfusion, and they reached peak at 24 h-48 h reperfusion. However, in the rats pretreated with Batroxobin, the number of apoptosis cells in left cerebral cortex and caudoputamen reduced significantly and the neuronal damage was much milder at 24 h reperfusion than that of saline-treated rats. The results indicate that administration of Batroxobin may reduce the apoptosis of neurons induced by cerebral ischemia and reperfusion and afford significant cerebroprotection in the model of focal cerebral ischemia and reperfusion.