In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object a...In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.展开更多
By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the ...By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.展开更多
Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices und...Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices under the organicorganic interface limited current conduction is developed. The dependence of current, field,and carrier distribution in bilayer organic devices with the structure of "injection electrode/Layer Ⅰ/Layer Ⅱ/collection electrode" on temperature are numerically analyzed. We conclude that, for a given applied voltage, when temperature is raised, the voltage of LayerⅠ will increase,and the field will be higher. Meanwhile, the voltage of Layer Ⅲ will decrease, the field will become weaker accordingly,and the current of the device will increase.展开更多
文摘In order to analyze the electrostatic field concerned with electrostatic proximity fuze problem using the available finite analysis software package, the technology to model the problem with a scale reduction object and boundary was presented. The boundary is determined by the maximum distance the sensor can detect. The object model is obtained by multiplying the terms in Poisson's equation with a scale reduction factor and the real value can be reconstructed with the same reverse process after software calculation. Using the finite element analysis program, the simulation value is close to the theoretical value with a little error. The boundary determination and scale reduction method is suitable to modeling the irregular electrostatic field around air targets, such as airplane, missile and so on, which is based on commonly used personal computer (PC). The technology reduces the calculation and storage cost greatly.
基金The National Natural Science Foundation of China(No.51008032)the China Postdoctoral Science Foundation(No.2011M501430)the Foundation of Central Universities of Ministry of Education(No.CHD2012JC011,CHD2011JC083)
文摘By the use of a large-scale ground differential settlement simulator, a full-size model test is performed to study the strain response and the deformation behavior of both the wearing course of asphalt cement and the base course of cement-stabilized gravel. Moreover, with the differential settlement at the bottom of the pavement structure as the constraint condition, a plane finite element model is established, which is used to study the stress variation of different pavement layers in response to the differential settlement of varying magnitudes. It shows that, under the effects of the ground differential settlement, the wearing course is subjected to the tensile stress while the base course to the compressive stress and the maximum additional tensile stress and compressive stress occur in the area of 1 m from the splicing joint between the new and the old subgrade. Plastic deformation develops in both layers when the ground differential settlement reaches 14 cm. When the differential settlement at the bottom of the pavement goes up to 1 cm, the maximum additional stress in the surface of the base course will reach 0. 28 MPa, which surpasses 0.276 MPa that is specified in the current specifications as the maximum splitting tensile strength for cement-stabilized base material.
文摘Temperature characteristics are important for the performance of organic thin film devices. On the basis of the hopping theory of Miller-Abrahams,an analytical model of charge transport for bilayer organic devices under the organicorganic interface limited current conduction is developed. The dependence of current, field,and carrier distribution in bilayer organic devices with the structure of "injection electrode/Layer Ⅰ/Layer Ⅱ/collection electrode" on temperature are numerically analyzed. We conclude that, for a given applied voltage, when temperature is raised, the voltage of LayerⅠ will increase,and the field will be higher. Meanwhile, the voltage of Layer Ⅲ will decrease, the field will become weaker accordingly,and the current of the device will increase.