Sum frequency generation vibrational spectroscopy(SFG-VS)is a powerful technique for determining molecular structures at both buried interface and air surface.Distinguishing the contribution of SFG signals from buried...Sum frequency generation vibrational spectroscopy(SFG-VS)is a powerful technique for determining molecular structures at both buried interface and air surface.Distinguishing the contribution of SFG signals from buried interface and air surface is crucial to the applications in devices such as microelectronics and bio-tips.Here we demonstrate that the SFG spectra from buried interface and air surface can be differentiated by controlling the film thickness and employment of surface-plasmon enhancement.Using substrate-supported PMMA(poly(methyl methacrylate))films as a model,we have visualized the variations in the contribution of SFG signals from buried interface and air surface.By monitoring carbonyl and C-H stretching groups,we found that SFG signals are dominated by the moieties(-CH2,-CH3,-OCH3 and C=O)segregated at the PMMA/air surface for the thin films while they are mainly contributed by the groups(-OCH3 and C=O)at the substrate/PMMA buried interface for the thick films.At the buried interface,the tilt angle of C=O decreases from65°to 43°as the film preparation concentration increases;in contrast,the angles at the air surface fall in the range from 38°to 21°.Surface plasmon generated by gold nanorods can largely enhance SFG signals,particularly the signals from the buried interface.展开更多
Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn m...Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.展开更多
Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP t...Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP turbine stage in aero-engine.Although an excellent turbine airfoil design can avoid flow separation on certain extent,but within flight envelope,LP turbine's characteristic Reynolds number may varied greatly,so it will be still under the risk of the presence of separation bubble.In this two parts paper a new concept of slotted-blade was raised to testify the gain of the blade slotting.A high aerodynamic loading LP turbine blade IET-LPTA was under investigated with different Reynolds number.Computational results reveal that the blade slotting could be a way of choice to suppress separation bubble and reduce profile loss under the condition of low Reynolds number,although its position and geometry need to be further investigated.展开更多
The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending spec...The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing, which was conducted at the ambient temperature of 100 °C. The morphology and composition of fractured surfaces were examined by means of a scanning electron microscopy (SEM) and an energy disperse spectroscopy (EDS). Images and spectrum show that cracks are initiated and propagated exclusively within YSZ layer adjacent to top/bond coat interface. The load-displacement curves obtained exhibit similar shapes that indicate two distinct stages in crack initiation and stable crack growth. Finite element analyses were performed to extract the adhesion strength of the TBCs. The delamination toughness of the plasma-sprayed 8YSZ coatings at 100 °C, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution.展开更多
Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement an...Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement and electronic properties of a coherent heterostructure of single-layer graphene and α-Al2O3(0001). The analysis of the atomic arrangement of single-layer graphene on α-Al2O3(0001) revealed an apparentcontradiction. The in-plane analysis shows that single-layer graphene grows not in a single-crystalline epitaxial manner, but rather in polycrystalline form, with two strongly pronounced preferred orientations. This suggests relatively weak interfacial interactions are operative. However, we demonstrate that unusually strong physical interactions between graphene and α-Al2O3(0001) exist, as evidenced by the small separation between the graphene and the α-Al2O3(0001) surface. The interfacial interaction is shown to be dominated by the electrostatic forces involved in the graphene n-system and the unsaturated electrons of the topmost O layer of α-Al2O3(0001), rather than the van der Waals interactions. Such features causes graphene hole doping and enable the graphene to slide on the α-Al2O3(0001) surface with only a small energy barrier despite the strong interfacial interactions.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFA0208700 and No.2017YFA0303500)the National Natural Science Foundation of China(No.21925302,No.21633007,and No.21873090)Anhui Initiative in Quantum Information Technologies(AHY090000)。
文摘Sum frequency generation vibrational spectroscopy(SFG-VS)is a powerful technique for determining molecular structures at both buried interface and air surface.Distinguishing the contribution of SFG signals from buried interface and air surface is crucial to the applications in devices such as microelectronics and bio-tips.Here we demonstrate that the SFG spectra from buried interface and air surface can be differentiated by controlling the film thickness and employment of surface-plasmon enhancement.Using substrate-supported PMMA(poly(methyl methacrylate))films as a model,we have visualized the variations in the contribution of SFG signals from buried interface and air surface.By monitoring carbonyl and C-H stretching groups,we found that SFG signals are dominated by the moieties(-CH2,-CH3,-OCH3 and C=O)segregated at the PMMA/air surface for the thin films while they are mainly contributed by the groups(-OCH3 and C=O)at the substrate/PMMA buried interface for the thick films.At the buried interface,the tilt angle of C=O decreases from65°to 43°as the film preparation concentration increases;in contrast,the angles at the air surface fall in the range from 38°to 21°.Surface plasmon generated by gold nanorods can largely enhance SFG signals,particularly the signals from the buried interface.
基金supported by the National Natural Science Foundation(51772115)the National Key Research and Development Program of China(2018YFE0206900)the Hubei Provincial Natural Science Foundation(2019CFA002)。
文摘Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.
基金provided by the Supercomputing Center of Chinese Academy of Sciences and the National Natural Science Foundation of China’s sponsorship
文摘Boundary layer separation and reattachment is often an unavoidable feature of low pressure (LP) turbine,one of the main causes of this phenomenon is the high altitude low Reynolds number experienced by the modern LP turbine stage in aero-engine.Although an excellent turbine airfoil design can avoid flow separation on certain extent,but within flight envelope,LP turbine's characteristic Reynolds number may varied greatly,so it will be still under the risk of the presence of separation bubble.In this two parts paper a new concept of slotted-blade was raised to testify the gain of the blade slotting.A high aerodynamic loading LP turbine blade IET-LPTA was under investigated with different Reynolds number.Computational results reveal that the blade slotting could be a way of choice to suppress separation bubble and reduce profile loss under the condition of low Reynolds number,although its position and geometry need to be further investigated.
基金Project (No 2007CB707702) supported by the National Basic Research Program (973) of China
文摘The failure mode and adhesion of thermal barrier coating (TBC) 8YSZ (ZrO2+8% (w/w) Y2O3) deposited on NiCoCrAlTaY bond coat by atmospheric plasma spraying were investigated. A grooved modified three-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing, which was conducted at the ambient temperature of 100 °C. The morphology and composition of fractured surfaces were examined by means of a scanning electron microscopy (SEM) and an energy disperse spectroscopy (EDS). Images and spectrum show that cracks are initiated and propagated exclusively within YSZ layer adjacent to top/bond coat interface. The load-displacement curves obtained exhibit similar shapes that indicate two distinct stages in crack initiation and stable crack growth. Finite element analyses were performed to extract the adhesion strength of the TBCs. The delamination toughness of the plasma-sprayed 8YSZ coatings at 100 °C, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution.
基金We are grateful to the 'Chebishev' and 'Lomonosov' supercomputers of Moscow State University for providing the chance of using a cluster computer for quantum-chemical calculations. S.E. thanks Prof. H. Kondo (Keio University) and Prof. T. Shimada (Hirosaki University) for NIXSW measurements. This work was partly supported by Grants-in-Aid for Young Scientists B (Grant No. 22760033) from the Japan Society for the Promotion of Science. The present work has been performed under the approval of the Photon Factory Program Advisory Committee (PF PAC Nos. 2010G660 and 2012G741). P.V.A., P.B.S. and L.Y.A. acknowledge the support from the Russian Science Foundation (project No. 14-13-00139).
文摘Direct growth of graphene on insulators is expected to yield significant improvements in performance of graphene-based electronic and spintronic devices. In this study, we successfully reveal the atomic arrangement and electronic properties of a coherent heterostructure of single-layer graphene and α-Al2O3(0001). The analysis of the atomic arrangement of single-layer graphene on α-Al2O3(0001) revealed an apparentcontradiction. The in-plane analysis shows that single-layer graphene grows not in a single-crystalline epitaxial manner, but rather in polycrystalline form, with two strongly pronounced preferred orientations. This suggests relatively weak interfacial interactions are operative. However, we demonstrate that unusually strong physical interactions between graphene and α-Al2O3(0001) exist, as evidenced by the small separation between the graphene and the α-Al2O3(0001) surface. The interfacial interaction is shown to be dominated by the electrostatic forces involved in the graphene n-system and the unsaturated electrons of the topmost O layer of α-Al2O3(0001), rather than the van der Waals interactions. Such features causes graphene hole doping and enable the graphene to slide on the α-Al2O3(0001) surface with only a small energy barrier despite the strong interfacial interactions.