In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of ...In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.展开更多
The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to...The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.展开更多
文摘采用高低爆速炸药分段式铺药的方式对钛/钢复合管板进行爆炸焊接。对爆炸复合法制备的电站冷凝器用29 m^(2)、材料为Gr.2/Gr.70的管板结合界面的微观组织和力学性能进行了分析,结果表明,采用2250~2300 m/s的高低爆速和分段布药工艺制备的大面积钛/钢复合板,在无损检测时无杂波,结合界面均匀,力学性能符合ASTM B 898—2020标准,满足装备使用要求。
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172185 and 10972147)the Natural Science Foundation of Hebei Province,China (Grant No. A2010001052)the Program for Changjiang Scholars and Innovative Research Team in University(Grant No. IRT0971)
文摘In the design and optimization of nanocomposites,the surface/interface stress arising at the inhomogeneity-matrix boundary plays an important role in determining the strength of structures.In this paper,the effect of surface/interface stress on the dynamic stress around a spherical inhomogeneity subjected to asymmetric dynamic loads is investigated.The surface/interface stress effects are taken into account by introducing Gurtin-Murdoch surface/interface elasticity model.The analytical solutions to displacement potentials are expressed by spherical wave function and associated Legendre function.The dynamic stress concentration factors around the spherical nano-inhomogeneity are illustrated and analyzed.The effects of the incident wave number,and the material properties of the interface and inhomogeneity on the dynamic stress around the inhomogeneity are examined.
基金supported by the National Natural Science Foundation of China(Grant No.11102022)
文摘The problem of an ellipsoidal inhomogeneity embedded in an infinitely extended elastic medium with sliding interfaces is investigated. An exact solution is presented for such an inhomogeneous system that is subject to remote uniform shearing stress. Both the elastic inclusion and matrix are considered isotropic with a separate elastic modulus. Based on Lur’e’s approach to solving ellipsoidal cavity problems through Lamé functions, several harmonic functions are introduced for Papkovich-Neuber displacement potentials. The displacement fields inside and outside the ellipsoidal inclusion are obtained explicitly, and the stress field in the whole domain is consequently determined.