Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomen...Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.展开更多
The hydrodynamic instabilities driven by an acid-base neutralization reaction, in contact along a plane interface, placed in a Hele-Shaw cell under the gravitational field are reported. The system consists of the heav...The hydrodynamic instabilities driven by an acid-base neutralization reaction, in contact along a plane interface, placed in a Hele-Shaw cell under the gravitational field are reported. The system consists of the heavier aqueous tetramethyle-ammonium hydroxide below the lighter layer of organic phase with propionic acid as reacting specie. The effect of chemical composition on hydrodynamic instabilities during interfacial mass transfer accompanied by a neutralization reaction is investigated. Depending on the initial concentration of the reacting species, Marangoni convection in the form of roll ceils or trains of waves is observed. Mach- Zehnder interferometer is used to measure the change in base concentration at the time of instability formation. The results show that the instabilities resulted from the convection flow are more efficient to the mechanism of mass transfer and can drastically alter pattern formation in the system.展开更多
Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates...Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on thermal diffusion at low bath undercooling,due to the fact that solute diffusion coefficient is usually three orders of magnitude less than thermal diffusion coefficient.At high bath undercooling,the effect of convection on the dendritic growth is very slight.Furthermore,a satisfying agreement between the model predictions with the available experiment data for the Cu70Ni30 alloy was obtained,especially at low bath undercoolings,profiting from the higher values of interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one ignoring the effect of convection.展开更多
The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane inter...The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self...By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.展开更多
In the Present study, free convection and heat transfer behavior of electrically conducting fluid in the boundary layer over a vertical continuously stretching surface is investigated. The effects of free convection, ...In the Present study, free convection and heat transfer behavior of electrically conducting fluid in the boundary layer over a vertical continuously stretching surface is investigated. The effects of free convection, magnetic field, suction/blowing at the surface and the stretching speed of the surface on the flow and heat transfer characteristics are considered. By applying one-parametric group theory to analysis of the problem, a similarity solution is found. The governing equations of continuity, momentum and energy are solved numerically by a fourth-order Runge-Kutta scheme. The numerical results, which are obtained for the flow and heat transfer characteristics, reveal the influences of the parameters.展开更多
基金Supported by the National Natural Science Foundation of China (20736005).
文摘Concentration gradient induced Rayleigh convection can influence effectively interracial mass transfer processes, but the convection phenomena are known as mesoscopic and complex. In order to investigate this phenomenon, a two-equation Lattice Boltzmann Method (LBM) is proposed to simulate the velocity and the concentra-tion distributions of Rayleigh convection generated in the CO2 absorptlon into ethanol liquid.The simulated results on velocity distributions are experimentally verified by PIV (particle image velocimetry technique) measurements. In order to simplify the analysis, the convection in the simulation as well as in the experiment, the Rayleigh convection was manipulated into a single down flow pattern, The simulated results show that the concentration contours agree qualitatively with the schlieren images in the literature. The experimental and simulated results show that theRayleigh convection under investigation is dominated by the flow in the downward direction and impels exchange of the liquid between the interfacial vicinity and the liquid bulk promoting the renewal of interfacial liquid, and hence enhances mass transfer. The comparison between the simulated and experimental results demonstrated that the proposed LBM is a promising alternative for simulating mass transfer induced Rayleigh convection.
文摘The hydrodynamic instabilities driven by an acid-base neutralization reaction, in contact along a plane interface, placed in a Hele-Shaw cell under the gravitational field are reported. The system consists of the heavier aqueous tetramethyle-ammonium hydroxide below the lighter layer of organic phase with propionic acid as reacting specie. The effect of chemical composition on hydrodynamic instabilities during interfacial mass transfer accompanied by a neutralization reaction is investigated. Depending on the initial concentration of the reacting species, Marangoni convection in the form of roll ceils or trains of waves is observed. Mach- Zehnder interferometer is used to measure the change in base concentration at the time of instability formation. The results show that the instabilities resulted from the convection flow are more efficient to the mechanism of mass transfer and can drastically alter pattern formation in the system.
基金the financial supports from the National Natural Science Foundation of China(No.51671075)the Heilongjiang Postdoctoral Fund for Scientific Research Initiation(No.LBH-Q16118)the Fundamental Research Foundation for Universities of Heilongjiang Province,China(No.LGYC2018-JC004).
文摘Considering both the effect of the nonisothermal nature of the interface as well as the effect of forced convection,an extended free dendritic growth model for binary alloys was proposed.Comparative analysis indicates that the effect of convection on solute diffusion is more remarkable compared with the ignorable effect of convection on thermal diffusion at low bath undercooling,due to the fact that solute diffusion coefficient is usually three orders of magnitude less than thermal diffusion coefficient.At high bath undercooling,the effect of convection on the dendritic growth is very slight.Furthermore,a satisfying agreement between the model predictions with the available experiment data for the Cu70Ni30 alloy was obtained,especially at low bath undercoolings,profiting from the higher values of interfacial migration velocity predicted by the present model with nonideal fluid case than that predicted by the one ignoring the effect of convection.
基金Deutsche Forschung Gemainschaft(Ec/201/1-5)Deutsches Zentrum fuer Luft und Raumfahrt(50WM0058).
文摘The interplay between chemistry and interfacial-tension-driven hydrodynamic instabilities has been studied experimentally. The system on hand consists of two immiscible liquids separated along an initially plane interface at which an interfacial reaction takes place to produce in situ a surfactant. It is identified that the dynamics of the system depends on the orientation of the Hele-Shaw cell with respect to the vector of gravity. If the nele-Shaw cell is placed vertically, Marangoni cells with vigorous convection develop in both phases along a nearly planar interface. However, if the Hele-Shaw cell is tilted off the gravity, the instabilities in the system are characterized by the large scale interracial deformation with a spatio-temporal periodicity together with the chemo-Marangoni convection. The focus is on the exploration of the transition from the cellular mode to the large scale interfacial deformation.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金Supported by the National Natural Science Foundation of China(20736005)
文摘By using a hybrid lattice-Boltzmann–finite-difference method(hybrid LBM–FDM method),three-dimensional simulations of solutal interfacial convection were conducted for the process of CO2absorption into ethanol.A self-renewal interface model is adopted as an interfacial perturbation model.The simulation results revealed some three-dimensional features of the induced interfacial convection,such as the development of diverging cellular flow and Rayleigh plume-like convection in liquid phase.The concentration distribution of the simulation result is validated and found to be in well agreement with the Schlieren visualization results qualitatively.Additionally,the mass transfer enhancements by interfacial convection were investigated via both simulation and experiment for the absorption process,and the mass transfer is shown to be enhanced by the interfacial convection by about two-fold comparing with that by diffusion.
文摘In the Present study, free convection and heat transfer behavior of electrically conducting fluid in the boundary layer over a vertical continuously stretching surface is investigated. The effects of free convection, magnetic field, suction/blowing at the surface and the stretching speed of the surface on the flow and heat transfer characteristics are considered. By applying one-parametric group theory to analysis of the problem, a similarity solution is found. The governing equations of continuity, momentum and energy are solved numerically by a fourth-order Runge-Kutta scheme. The numerical results, which are obtained for the flow and heat transfer characteristics, reveal the influences of the parameters.