The effect of substrate on the phase morphologies of PMMA/PS blend films was investigated by means of phase contrast microscope. PMMA/PS blend films were cast onto various substrates(such as glass substrate and PP sub...The effect of substrate on the phase morphologies of PMMA/PS blend films was investigated by means of phase contrast microscope. PMMA/PS blend films were cast onto various substrates(such as glass substrate and PP substrate) by spin-coating with thickness of about 10 μm. It was observed that there was a large difference of the phase inversion region between the blend films cast on glass and on PP substrates. On glass substrate, the phase inversion occurred at about \%Φ\%_m=0 4(PS mass fraction) while at \%Φ\%_m=0 5 on PP substrate. This implies that there is a shift of the phase inversion region with the change of substrate in cast polymer blend films. In other words, phase inversion region depends on the substrate. ATR-FTIR analysis was used to detect the composition of the surface and the bottom of the films(about 100 μm thick) obtained by evaporating solvent from the polymer blend solution. The ATR-FTIR spectra of the surface and the bottom of the PMMA/PS blend thin films cast on glass substrate and PP substrate showed that PMMA component preferentially segregated to glass substrate and PS component was enriched on the PP substrate. This selective segregation was due to the difference of the wetting abilities of PS and PMMA on the two kinds of substrates. The polymer-substrate interfacial tension γ were calculated and the results supported the ATR-FTIR results. It could be inferred that the shift of the phase inversion region with the change of the substrate in PMMA/PS blend film was due to the fact that the composition of the blend in the bulk changed, owing to the selective enrichment of one component of polymer blend to the substrate. In other words, the affinity between polymer and substrate can strongly influence the phase morphologies and the phase inversion region in polymer blend films.展开更多
A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the ep...A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.展开更多
The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that t...The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.展开更多
Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid i...Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.展开更多
Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-ori...Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-oriented knowledge representation, the heuristic inference engine with an improved depth-first search (DFS) and the graphical user interface. A diagnositic ES instance for debris on magnetic chip detectors (MCDs) is then created with the EST. The spot running shows that the rule-type EST enhances the abilities of knowledge representation and heuristic inference, and breaks a new way for the rapid construction and implementation of ES.展开更多
In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response...In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.展开更多
Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show ...Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show that higher rotation speed and lower transverse speed produce more heat generated during FSP.The defect-free and good mechanical properties of the AA5083/T2 copper composite plate can be obtained under the condition of the rotation speed of 1200 r/min,the transverse speed of 30 mm/min and the overlap of 2/24.Moreover,M-FSP changes the interface bonding mechanism from metallurgical bonding to vortex connection,improving the bonding strength of composite plate,which can guarantee the repairing quality of composite plates.展开更多
Rolling process of symmetrical non-bonded sandwich sheets was investigated by the method of upper bound. A deformation model was proposed and the mathematical relations of the velocity components were developed. The i...Rolling process of symmetrical non-bonded sandwich sheets was investigated by the method of upper bound. A deformation model was proposed and the mathematical relations of the velocity components were developed. The internal, shear and frictional power terms were derived and used in the upper bound model. Through the analysis, the rolling force, mean contact pressure and final thickness of each layer were determined. The validity of the proposed analytical model was discussed by comparing the theoretical predictions with the experimental data found in the literatures. Effects of various rolling conditions such as the flow stress ratio, initial thickness ratio of the raw sheets and total thickness reduction upon the rolling torque were analyzed. The accuracy of the developed analytical model was very high.展开更多
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs...Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.展开更多
To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12...To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12Si powders)was conducted using a special tool without pin,respectively.All the FSLW joints(without insert)fractured within top sheet but not along faying surface,suggesting that the shoulder plays an important role comparable or superior to pin in FSLW of thin sheets.Using several specially designed experimental techniques,the presence of forging and torsion actions of shoulder was demonstrated.The fracture surface of the joints with inserts indicates that interfacial wear occurs,which results in the oxide film disruption and vertically interfacial mixing over the area forged by shoulder with a larger diameter than a general pin,especially at the boundary region of weld.The boundary effect can be induced and enhanced by forging effect and torsion effect.展开更多
文摘The effect of substrate on the phase morphologies of PMMA/PS blend films was investigated by means of phase contrast microscope. PMMA/PS blend films were cast onto various substrates(such as glass substrate and PP substrate) by spin-coating with thickness of about 10 μm. It was observed that there was a large difference of the phase inversion region between the blend films cast on glass and on PP substrates. On glass substrate, the phase inversion occurred at about \%Φ\%_m=0 4(PS mass fraction) while at \%Φ\%_m=0 5 on PP substrate. This implies that there is a shift of the phase inversion region with the change of substrate in cast polymer blend films. In other words, phase inversion region depends on the substrate. ATR-FTIR analysis was used to detect the composition of the surface and the bottom of the films(about 100 μm thick) obtained by evaporating solvent from the polymer blend solution. The ATR-FTIR spectra of the surface and the bottom of the PMMA/PS blend thin films cast on glass substrate and PP substrate showed that PMMA component preferentially segregated to glass substrate and PS component was enriched on the PP substrate. This selective segregation was due to the difference of the wetting abilities of PS and PMMA on the two kinds of substrates. The polymer-substrate interfacial tension γ were calculated and the results supported the ATR-FTIR results. It could be inferred that the shift of the phase inversion region with the change of the substrate in PMMA/PS blend film was due to the fact that the composition of the blend in the bulk changed, owing to the selective enrichment of one component of polymer blend to the substrate. In other words, the affinity between polymer and substrate can strongly influence the phase morphologies and the phase inversion region in polymer blend films.
基金The National Natural Science Foundation of China(No50578038)
文摘A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.
基金Project(2011DFR50630)sponsored by the International S&T Cooperation of China
文摘The growth of intermetallic compounds at the interface between solid Al and Fe and the effects of intermetallic compound layers on the interfacial bonding of clad materials were investigated. The results showed that the interface between the solid Fe and Al formed by heat-treatment consisted of Fe2Al5 and FeAl3 intermetallic compound layers, which deteriorated the interfacial bonding strength. Fractures occurred in the intermetallic compound layer during the shear testing. The location of the fracture depended on the defects of microcracks or voids in the intermetallic compound layers. The microcracks in the intermetallic compound layer were caused by the mismatch of thermal expansion coefficients of materials during cooling, and the voids were consistent with the Kirkendall effect. The work will lay an important foundation for welding and joining of aluminum and steel, especially for fabrication of Al-Fe clad materials.
基金supported by the National Natural Science Foundation of China(5120839621277107+5 种基金21477094and 51472192)the Program for New Century Excellent Talents in University(NCET-13-0944)the Fundamental Research Funds for the Central Universities(WUT 2014-1a-0032014-VII-037and 2015IB002)~~
文摘Noble metal/titania hollow nanomaterials usually exhibit excellent photocatalytic activity because of their high specific surface area,low density,good surface permeability,strong light-harvesting capacity,and rapid interfacial charge transfer. However,the present preparation methods usually include complicated and multistep procedures,which can cause damage to the hollow nanostructures. In this paper,a facile template-induced synthesis,based on a template-directed deposition and in situ template-sacrificial dissolution,was employed to prepare Ag-modified TiO 2(Ag/TiO 2) hollow octahedra using Ag2 O octahedra as templates and TiF 4 as the precursor. In the synthetic strategy,the shells of TiO 2 hollow octahedra were formed by coating TiO 2 nanoparticles on the surface of Ag2 O templates based on the template-directed deposition. Simultaneously,the Ag2 O templates can be in situ removed by dissolving the Ag2 O octahedral template in HF solution produced via the hydrolysis reaction of TiF 4 in the reaction system. In addition,Ag nanoparticles were deposited on the inside and outside surfaces of TiO 2 shells by effectively using the photosensitive properties of Ag2 O and Ag+ ions under light irradiation,along with the formation of TiO 2 hollow octahedra. The Ag/TiO 2 hollow octahedra exhibited high photocatalytic activity because of their(1) short diffusion distances between photogenerated electrons and holes because of the thin shells of Ag/TiO 2 hollow octahedral,(2) deposition of Ag nanoparticles on the inside and outside surfaces of TiO 2 shells,and(3) rapid interfacial charge transfer between TiO 2 shells and Ag nanoparticles. This work may also provide new insights into preparing other Ag-modified and hollow nanostructured photocatalysts.
文摘Expert systems (ESs) are being increasingly applied to the fault diagnosis of engines. Based on the idea of ES template (EST), an object-oriented rule-type EST is emphatically studied on such aspects as the object-oriented knowledge representation, the heuristic inference engine with an improved depth-first search (DFS) and the graphical user interface. A diagnositic ES instance for debris on magnetic chip detectors (MCDs) is then created with the EST. The spot running shows that the rule-type EST enhances the abilities of knowledge representation and heuristic inference, and breaks a new way for the rapid construction and implementation of ES.
基金Project(20091102110021)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘In order to design the press bend forming path of aircraft integral panels,a novel optimization method was proposed, which integrates FEM equivalent model based on previous study,the artificial neural network response surface,and the genetic algorithm.First,a multi-step press bend forming FEM equivalent model was established,with which the FEM experiments designed with Taguchi method were performed.Then,the BP neural network response surface was developed with the sample data from the FEM experiments.Furthermore,genetic algorithm was applied with the neural network response surface as the objective function. Finally,verification was carried out on a simple curvature grid-type stiffened panel.The forming error of the panel formed with the optimal path is only 0.098 39 and the calculating efficiency has been improved by 77%.Therefore,this novel optimization method is quite efficient and indispensable for the press bend forming path designing.
基金The authors are grateful for the financial supports from the National Natural Science Foundation of China(No.51505293)the Natural Science Foundation of Jiangsu Province,China(No.BK20190684)+1 种基金the Natural Science Research of the Jiangsu Higher Education Institutions of China(No.18KJB460016)the Key Laboratory of Lightweight Materials,Nanjing Tech University,as well as by a fellowship from the International Postdoctoral Exchange Followship Program(2020096 to Jian WANG).
文摘Multi-pass friction stir processing(M-FSP)was performed to repair the interface defects of AA5083/T2 copper explosive composite plates.The interface morphology and its bonding mechanism were explored.The results show that higher rotation speed and lower transverse speed produce more heat generated during FSP.The defect-free and good mechanical properties of the AA5083/T2 copper composite plate can be obtained under the condition of the rotation speed of 1200 r/min,the transverse speed of 30 mm/min and the overlap of 2/24.Moreover,M-FSP changes the interface bonding mechanism from metallurgical bonding to vortex connection,improving the bonding strength of composite plate,which can guarantee the repairing quality of composite plates.
文摘Rolling process of symmetrical non-bonded sandwich sheets was investigated by the method of upper bound. A deformation model was proposed and the mathematical relations of the velocity components were developed. The internal, shear and frictional power terms were derived and used in the upper bound model. Through the analysis, the rolling force, mean contact pressure and final thickness of each layer were determined. The validity of the proposed analytical model was discussed by comparing the theoretical predictions with the experimental data found in the literatures. Effects of various rolling conditions such as the flow stress ratio, initial thickness ratio of the raw sheets and total thickness reduction upon the rolling torque were analyzed. The accuracy of the developed analytical model was very high.
基金Projects(51078355,50938008) supported by the National Natural Science Foundation of ChinaProject(094801020) supported by the Academic Scholarship for Doctoral Candidates of the Ministry of Education,China+1 种基金Project(CX2011B093) supported by the Doctoral Candidate Research Innovation Project of Hunan Province, ChinaProject(20117Q008) supported by the Central University Basic Scientific Research Business Expenses Special Fund of China
文摘Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant.
文摘To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12Si powders)was conducted using a special tool without pin,respectively.All the FSLW joints(without insert)fractured within top sheet but not along faying surface,suggesting that the shoulder plays an important role comparable or superior to pin in FSLW of thin sheets.Using several specially designed experimental techniques,the presence of forging and torsion actions of shoulder was demonstrated.The fracture surface of the joints with inserts indicates that interfacial wear occurs,which results in the oxide film disruption and vertically interfacial mixing over the area forged by shoulder with a larger diameter than a general pin,especially at the boundary region of weld.The boundary effect can be induced and enhanced by forging effect and torsion effect.