Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn m...Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.展开更多
Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reaction...Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.展开更多
基金supported by the National Natural Science Foundation(51772115)the National Key Research and Development Program of China(2018YFE0206900)the Hubei Provincial Natural Science Foundation(2019CFA002)。
文摘Aqueous zinc ion batteries(ZIBs)show great potential in large-scale energy storage systems for their advantages of high safety,low cost,high capacity,and environmental friendliness.However,the poor performance of Zn metal anode seriously hinders the application of ZIBs.Herein,we use the zinc-ion intercalatable V_(2)O_(5)nH_(2)O(VO)as the interface modification material,for the first time,to on-site build a Zn^(2+)-conductive ZnxV_(2)O_(5)nH_(2)O(ZnVO)interfacial layer via the spontaneous short-circuit reaction between the pre-fabricated VO film and Zn metal foil.Compared with the bare Zn,the ZnVO-coated Zn anode exhibits better electrochemical performances with dendrite-free Zn deposits,lower polarization,higher coulombic efficiency over 99%after long cycles and 10 times higher cycle life,which is confirmed by constructing Zn symmetrical cell and Zn|ZnSO_(4)+Li_(2)SO_(4)|LiFePO_(4) full cell.
基金supported by the National Natural Science Foundation of China(91963118 and 52173246)Science Technology Program of Jilin Province(20200201066JC)the 111 Project(B13013)。
文摘Although graphite anodes operated with representative de/intercalation patterns at low potentials are considered highly desirable for K-ion batteries,the severe capacity fading caused by consecutive reduction reactions on the aggressively reactive surface is inevitable given the scarcity of effective protecting layers.Herein,by introducing a flame-retardant localized high-concentration electrolyte with retentive solvation configuration and relatively weakened anion-coordination and non-solvating fluorinated ether,the rational solid electrolyte interphase characterized by well-balanced inorganic/organic components is tailored in situ.This effectively prevented solvents from excessively decomposing and simultaneously improved the resistance against K-ion transport.Consequently,the graphite anode retained a prolonged cycling capability of up to 1400 cycles(245 mA h g,remaining above 12 mon)with an excellent capacity retention of as high as 92.4%.This is superior to those of conventional and high-concentration electrolytes.Thus,the optimized electrolyte with moderate salt concentration is perfectly compatible with graphite,providing a potential application prospect for K-storage evolution.