The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematic...The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematical model as well as three-dimensional computational fluid dynamics (CFD) model was established to analyze the flow regions of feedwells on an industrial scale. The concept of RTD, although a well-known method for the characterization of mixing behavior in conventional mixers and reactors, is still a novel measure for the characterization of mixing in feedwells. Numerical simulation results show that the inlet feed rate and the aspect ratio of feedwells are the most critical parameters which affect the RTD of feedwell. Further simulation experiments were then carried out. Under the optimal operation conditions, the volume fraction of dead zone can reduce by10.8% and an increasement of mixing flow volume fraction by 6.5% is also observed. There is an optimum feed inlet rate depending on the feedwell design. The CFD model in conjunction with the RTD analysis then can be used as an effective tool in the design, evaluation and optimization of thickener feedwell in the red mud separation.展开更多
[Objective] This study aimed to investigate the elimination regularity of ronidazole residues in chickens. [Method] Normal, healthy, 85-day-old Jinling broilers were selected as experimental chickens and fed with comp...[Objective] This study aimed to investigate the elimination regularity of ronidazole residues in chickens. [Method] Normal, healthy, 85-day-old Jinling broilers were selected as experimental chickens and fed with complete feed containing different concentrations of ronidazole. Ronidazole residues in chicken feather and edible tissues were detected by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to compare the elimination regularity. [Result] Data analysis showed that the amount of ronidazole residues in chicken feather and edible tissues was positively correlated with the concentration of ronidazole administered. After drug withdrawal, there was a significant correlation between the elimination of ronidazole residues in chicken feather and edible tissues. Thus, the prediction model of ronidazole residues in chicken feather could be established. [Conclusion] This study could improve in vivo detection system of ronidazole residues and provide reference for monitoring and controlling drug residues in livestock and poultry oroduction.展开更多
This study was aimed to do the prediction of pesticide residues based on fuzzy system. Taking chlorpyrifos as an example, the Mathematic Fuzzy System was established by using the MRL values (maximum residue limits of...This study was aimed to do the prediction of pesticide residues based on fuzzy system. Taking chlorpyrifos as an example, the Mathematic Fuzzy System was established by using the MRL values (maximum residue limits of all kinds of pesticides in food) of the Matlab Fuzzy Toolbox to analyze and predict the degra- dation degree of pesticide residues of the same crop at different time periods of bagging treatment, with the aim to provide some theoretical guidances for solving practical problems in real life.展开更多
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin...Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.展开更多
A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the e...A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the effects of various operating conditions (i.e., inflow rates of catalyst, hydrogen and comonomer) on the molecular structure and properties of polyethylene (i.e.,Mw,Mn, polydispersity index (IPD), melt index, density, etc.) are fully assessed. It is shown that the proposed comprehensive model is capable of simulating the steady-state operation of an industrial slurry stirred tank reactor series. It is demonstrated that changing the catalyst flow rate, changes simultaneously the mean residence-time in both reactors, which plays a significant role on the establishment of polyethylene architecture properties such as molecular mass and IPD. The melt index and density of polyethylene are mainly controlled by hydrogen and comonomer concentration, respectively.展开更多
基金Project (50876116) supported by the National Natural Science Foundation of China
文摘The residence-time distribution (RTD) and the compartment model were applied to characterizing the flow regions in red mud separation thickener’s feedwells. Combined with the experimental work, validated mathematical model as well as three-dimensional computational fluid dynamics (CFD) model was established to analyze the flow regions of feedwells on an industrial scale. The concept of RTD, although a well-known method for the characterization of mixing behavior in conventional mixers and reactors, is still a novel measure for the characterization of mixing in feedwells. Numerical simulation results show that the inlet feed rate and the aspect ratio of feedwells are the most critical parameters which affect the RTD of feedwell. Further simulation experiments were then carried out. Under the optimal operation conditions, the volume fraction of dead zone can reduce by10.8% and an increasement of mixing flow volume fraction by 6.5% is also observed. There is an optimum feed inlet rate depending on the feedwell design. The CFD model in conjunction with the RTD analysis then can be used as an effective tool in the design, evaluation and optimization of thickener feedwell in the red mud separation.
文摘[Objective] This study aimed to investigate the elimination regularity of ronidazole residues in chickens. [Method] Normal, healthy, 85-day-old Jinling broilers were selected as experimental chickens and fed with complete feed containing different concentrations of ronidazole. Ronidazole residues in chicken feather and edible tissues were detected by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to compare the elimination regularity. [Result] Data analysis showed that the amount of ronidazole residues in chicken feather and edible tissues was positively correlated with the concentration of ronidazole administered. After drug withdrawal, there was a significant correlation between the elimination of ronidazole residues in chicken feather and edible tissues. Thus, the prediction model of ronidazole residues in chicken feather could be established. [Conclusion] This study could improve in vivo detection system of ronidazole residues and provide reference for monitoring and controlling drug residues in livestock and poultry oroduction.
基金The Youth Foundation of the Department of Education of Hebei Province in 2016(QN2016243)
文摘This study was aimed to do the prediction of pesticide residues based on fuzzy system. Taking chlorpyrifos as an example, the Mathematic Fuzzy System was established by using the MRL values (maximum residue limits of all kinds of pesticides in food) of the Matlab Fuzzy Toolbox to analyze and predict the degra- dation degree of pesticide residues of the same crop at different time periods of bagging treatment, with the aim to provide some theoretical guidances for solving practical problems in real life.
基金Project(50975093)supported by the National Natural Science Foundation of ChinaProject(08-0209)supported by New Century Excellent Talent in University,Ministry of Education,ChinaProject(2009ZM0283)supported by the Fundamental Research Funds for the Central Universities,China
文摘Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.
文摘A five-site comprehensive mathematical model was developed to simulate the steady-state behavior of industrial slurry polymerization of ethylene in multistage continuous stirred tank reactors. More specifically, the effects of various operating conditions (i.e., inflow rates of catalyst, hydrogen and comonomer) on the molecular structure and properties of polyethylene (i.e.,Mw,Mn, polydispersity index (IPD), melt index, density, etc.) are fully assessed. It is shown that the proposed comprehensive model is capable of simulating the steady-state operation of an industrial slurry stirred tank reactor series. It is demonstrated that changing the catalyst flow rate, changes simultaneously the mean residence-time in both reactors, which plays a significant role on the establishment of polyethylene architecture properties such as molecular mass and IPD. The melt index and density of polyethylene are mainly controlled by hydrogen and comonomer concentration, respectively.