畜禽养殖物联网由于工作环境恶劣、网络传输故障等因素容易产生异常感知数据,为保证数据质量,根据畜禽养殖物联网数据流周期性、时序性等特点,提出了一种基于滑动窗口与支持向量回归(Sliding window and support vector machines for re...畜禽养殖物联网由于工作环境恶劣、网络传输故障等因素容易产生异常感知数据,为保证数据质量,根据畜禽养殖物联网数据流周期性、时序性等特点,提出了一种基于滑动窗口与支持向量回归(Sliding window and support vector machines for regression,SW-SVR)的异常数据实时检测方法。首先根据畜禽物联网数据流特征周期以及采样频率确定滑动窗口尺寸;然后通过SVR模型预测畜禽养殖物联网数据流中某一时刻传感器测量值;最后计算预测区间,根据实际测量值是否落入该区间判断是否异常并对异常数据进行置换处理。采用畜禽养殖物联网环境数据进行试验,结果表明:所提滑动窗口计算方法得到的窗口尺寸预测的MAPE为0.188 4,畜禽养殖物联网异常数据检测率达98%,能够有效检测和处理畜禽养殖物联网数据流中的异常数据。展开更多
文摘畜禽养殖物联网由于工作环境恶劣、网络传输故障等因素容易产生异常感知数据,为保证数据质量,根据畜禽养殖物联网数据流周期性、时序性等特点,提出了一种基于滑动窗口与支持向量回归(Sliding window and support vector machines for regression,SW-SVR)的异常数据实时检测方法。首先根据畜禽物联网数据流特征周期以及采样频率确定滑动窗口尺寸;然后通过SVR模型预测畜禽养殖物联网数据流中某一时刻传感器测量值;最后计算预测区间,根据实际测量值是否落入该区间判断是否异常并对异常数据进行置换处理。采用畜禽养殖物联网环境数据进行试验,结果表明:所提滑动窗口计算方法得到的窗口尺寸预测的MAPE为0.188 4,畜禽养殖物联网异常数据检测率达98%,能够有效检测和处理畜禽养殖物联网数据流中的异常数据。