This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
A method for determination of lycopene concentration in dog plasma wasestablished. Methods RP-HPLC was used; the mobile phase consisted of methanol-acetonitrile-methylenechloride (40:30:30, V/V) , the wavelength of de...A method for determination of lycopene concentration in dog plasma wasestablished. Methods RP-HPLC was used; the mobile phase consisted of methanol-acetonitrile-methylenechloride (40:30:30, V/V) , the wavelength of detection was 472 nm, the column temperature wasambient temperature, and the flow rate was 1.0 mL·min^(-1). Results The standard curve was linearin the range from 0.012 4 to 0.496 μg·mL^(-1) with r=0.9992. The average extraction recovery was97.6% +-4.2%. The intra-day and inter-day RSD were 1.52% -4.95% and 2.31% -7.38%, respectively.Conclusion This method is sensitive, rapid, reproducible, and of good selectivity for the analysisof lycopene in dog plasma.展开更多
The viability of most tomato varieties cultivated in Libya have been tested to infect with potato spindle tuber viroid/potatoes (PSTVd) and its impact on growth and production of some of these varieties, which were ...The viability of most tomato varieties cultivated in Libya have been tested to infect with potato spindle tuber viroid/potatoes (PSTVd) and its impact on growth and production of some of these varieties, which were mechanically inoculated with Libyan isolate of viroid PSTVd as follows: Vlkato, Sankarh, Lebda, Jasmine, Kenza and Hana. The percent of incidence were 95.95%, 90%, 90.80%, 80% and 20%, respectively. The following varieties have been contagious mechanically with viroid of PSTVd: Vlkato, zahra, Toria, Lebda, Hoda, Farwa, Alkaraz, Naziha, Rim Star and Kartika. The percent of incidence were 95.95%, 85%, 85.80%, 80%, 70.40%, 0.0%, 0.0%, respectively. The varied symptoms of wrinkle, twist, warp, swell the veins of the leaves, dark brown spots formation and a large yellow spots turned into white patches. Also the effect of the Egyptian isolate viroid PSTVd in the growth and production of varieties Jasmine, Lebda, Soberhalim, and treasure No. 185 had been studied, as the average rates of decline in the production of the fruits tomatoes/tomato 43.4% and 17% length of plants, and in the fresh weight and dry root of the sum of 35% and 37% respictively.展开更多
Pepino mosaic virus (PepMV), monopartite RNA virus, 6,500 pb, belonging to Flexiviridae and Potexvirus group, is highly infectious and easily transmissible. Its economic impact is major for the tomato producer's co...Pepino mosaic virus (PepMV), monopartite RNA virus, 6,500 pb, belonging to Flexiviridae and Potexvirus group, is highly infectious and easily transmissible. Its economic impact is major for the tomato producer's countries. Prevention, based on early virus detection is the only effective control measure. Monoclonal antibodies appeared to be very useful tool. The authors used for the production of monoclonal antibodies hybridomas technique, by fusing spleen cells of immunized BALB/c mice to PepMV and SP2/O cancerous cells. The aim of this work is to produce hybridomas producers of Mab that could be used for ELISA in Morocco. At the same time, these efforts will serve to decrease expenses of producers concerning phytosanitory control. We obtained 16 hybridomas lines producers of Mab specific for PepMV. They were tested for efficiencies in ELISA and two lines were retained for production of Mab on large scale (1B 11-G 10 and 5A l-G5). Isotyping of these two lines showed that they are belonging to IgG 1 class and easily purified by affinity chromatography in agarose column by protein A. The conjugation of these two antibodies to alkaline phosphatase has been verified by DAS-ELISA. These antibodies will enable to diagnose the disease from infected tomato plants, integrating several serological tests to control it and target the actions of struggles.展开更多
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
文摘A method for determination of lycopene concentration in dog plasma wasestablished. Methods RP-HPLC was used; the mobile phase consisted of methanol-acetonitrile-methylenechloride (40:30:30, V/V) , the wavelength of detection was 472 nm, the column temperature wasambient temperature, and the flow rate was 1.0 mL·min^(-1). Results The standard curve was linearin the range from 0.012 4 to 0.496 μg·mL^(-1) with r=0.9992. The average extraction recovery was97.6% +-4.2%. The intra-day and inter-day RSD were 1.52% -4.95% and 2.31% -7.38%, respectively.Conclusion This method is sensitive, rapid, reproducible, and of good selectivity for the analysisof lycopene in dog plasma.
文摘The viability of most tomato varieties cultivated in Libya have been tested to infect with potato spindle tuber viroid/potatoes (PSTVd) and its impact on growth and production of some of these varieties, which were mechanically inoculated with Libyan isolate of viroid PSTVd as follows: Vlkato, Sankarh, Lebda, Jasmine, Kenza and Hana. The percent of incidence were 95.95%, 90%, 90.80%, 80% and 20%, respectively. The following varieties have been contagious mechanically with viroid of PSTVd: Vlkato, zahra, Toria, Lebda, Hoda, Farwa, Alkaraz, Naziha, Rim Star and Kartika. The percent of incidence were 95.95%, 85%, 85.80%, 80%, 70.40%, 0.0%, 0.0%, respectively. The varied symptoms of wrinkle, twist, warp, swell the veins of the leaves, dark brown spots formation and a large yellow spots turned into white patches. Also the effect of the Egyptian isolate viroid PSTVd in the growth and production of varieties Jasmine, Lebda, Soberhalim, and treasure No. 185 had been studied, as the average rates of decline in the production of the fruits tomatoes/tomato 43.4% and 17% length of plants, and in the fresh weight and dry root of the sum of 35% and 37% respictively.
文摘Pepino mosaic virus (PepMV), monopartite RNA virus, 6,500 pb, belonging to Flexiviridae and Potexvirus group, is highly infectious and easily transmissible. Its economic impact is major for the tomato producer's countries. Prevention, based on early virus detection is the only effective control measure. Monoclonal antibodies appeared to be very useful tool. The authors used for the production of monoclonal antibodies hybridomas technique, by fusing spleen cells of immunized BALB/c mice to PepMV and SP2/O cancerous cells. The aim of this work is to produce hybridomas producers of Mab that could be used for ELISA in Morocco. At the same time, these efforts will serve to decrease expenses of producers concerning phytosanitory control. We obtained 16 hybridomas lines producers of Mab specific for PepMV. They were tested for efficiencies in ELISA and two lines were retained for production of Mab on large scale (1B 11-G 10 and 5A l-G5). Isotyping of these two lines showed that they are belonging to IgG 1 class and easily purified by affinity chromatography in agarose column by protein A. The conjugation of these two antibodies to alkaline phosphatase has been verified by DAS-ELISA. These antibodies will enable to diagnose the disease from infected tomato plants, integrating several serological tests to control it and target the actions of struggles.