The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it ...The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it is found that the average band offset parameter Emv,av=Em-Ev, av remains basically unchanged under different strain conditions. Therefore, provided the band offset parameter before strain Emv,0 of bulk material is calculated, and the experiment values of deformation potential b and spin-orbit (SO) splitting energy △0 are quoted, the Emv at strained layer can be obtained by a simple and convenient algebraic calculation. Thus the valence band offset △Ev at strained layer heterojunction can also be predicted conveniently. This simplified calculation method is characterized by decreased calculation amount and increased conviction due to use as many as possible the experiment values.展开更多
A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggest...A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.展开更多
基金Special Doctoral Research Foundation of Chinese State Commission of Education!(9538409 )Natural Science Foundation of Fujian
文摘The average bond energy method is popularized and applied to study band offsets at strained layer heterojunctions. By careful examination of hydrostatic and uniaxial strain actions on the band offset parameter Emv,it is found that the average band offset parameter Emv,av=Em-Ev, av remains basically unchanged under different strain conditions. Therefore, provided the band offset parameter before strain Emv,0 of bulk material is calculated, and the experiment values of deformation potential b and spin-orbit (SO) splitting energy △0 are quoted, the Emv at strained layer can be obtained by a simple and convenient algebraic calculation. Thus the valence band offset △Ev at strained layer heterojunction can also be predicted conveniently. This simplified calculation method is characterized by decreased calculation amount and increased conviction due to use as many as possible the experiment values.
文摘A method, which can predict the valence band offsets at strained layer heterojunctions under different strain situations only by calculating band structures and deformation parameters of the bulk materials, is suggested. The applicability of this method is verified by calculation of the valence band offsets at strained layer heterojuntions ,such as InP/InAs, InP/GaP, GaAs/InAs, GaP/GaAs and AlAs/InAs with various strain conditions.