Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of ...Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of pulsed laser ablation and low-temperature annealing post-processing. An inclined cone structure array is made on stainless steel surfaces, and then 120 °C low-temperature annealing is applied. Such surface displays excellent mechanical durability and anisotropic superhydrophobicity. It is demonstrated experimentally that the contact angle of water droplets on the surface is different along the parallel(167° ±2°) and perpendicular directions(157° ±2°) of the inclined cone structure. The sliding behaviors of water droplets and mechanical durability of the inclined cone structures are studied. These surfaces obtained in a short time with environmentally friendly fabrication can be applied in industries for water harvesting, droplet manipulation, and pipeline transportation.展开更多
Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspirat...Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, tinder the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.展开更多
基金Project(A19C2a0019) supported by the Advanced Remanufacturing and Technology Centre (ARTC) under its RIE2020 Advanced Manufacturing and Engineering (AME) IAF PP,Singapore。
文摘Metal superhydrophobic surfaces with anisotropic wettability and adhesion have become more and more important due to their promising applications. Herein, we report a new fabrication strategy through a combination of pulsed laser ablation and low-temperature annealing post-processing. An inclined cone structure array is made on stainless steel surfaces, and then 120 °C low-temperature annealing is applied. Such surface displays excellent mechanical durability and anisotropic superhydrophobicity. It is demonstrated experimentally that the contact angle of water droplets on the surface is different along the parallel(167° ±2°) and perpendicular directions(157° ±2°) of the inclined cone structure. The sliding behaviors of water droplets and mechanical durability of the inclined cone structures are studied. These surfaces obtained in a short time with environmentally friendly fabrication can be applied in industries for water harvesting, droplet manipulation, and pipeline transportation.
基金the financial support of the National Natural Science Foundation of China (21001013, 21121001, 91127025)National Basic Research Program of China (2010CB934700)+3 种基金Program for New Century Excellent Talents in UniversityBeijing Natural Science Foundation(2122035)Specialized Research Fund for the Doctoral Program of Higher Educationthe Fundamental Research Funds for the Central Universities
文摘Self-assembly is the fundamental principle, which can occur spontaneously in nature. Through billions of years of evolution, nature has learned what is optimal. The optimized biological solution provides some inspiration for scientists and engineers. In the past decade, tinder the multi-disciplinary collaboration, bio-inspired special wetting surfaces have attracted much attention for both fundamental research and practical applications. In this review, we focus on recent research progress in bio-inspired special wetting surfaces via self-assembly, such as low adhesive superhydrophobic surfaces, high adhesive superhydrophobic surfaces, superamphiphobic surfaces, and stimuli-responsive surfaces. The challenges and perspectives of this research field in the future are also briefly addressed.