The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetr...The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.展开更多
A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch ...A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch reactor and the isotherms were modelized by the Fowler-Guggenheim equation. During the adsorption process weak zeolite-sorbate interactions and more significant sorbate-sorbate attractions were identified. The adsorption was not linked to the molecular size of the sorbates and a strong correlation was established between the adsorption compound was the best adsorbed. The removal performances capacities and the dipole moments of the sorbates. The most polar of the zeolites depended on their hydrophobicity.展开更多
基金Projects(22108114, 5180031184) supported by the National Natural Science Foundation of China。
文摘The adsorption mechanism of O-isopropyl-S-[2-(hydroxyimino) propyl] dithiocarbonate ester(IPXPO) to chalcopyrite was investigated by using contact angle, in-situ atomic force microscopy(in-situ AFM), cyclic voltammetry(CV) and X-ray photoelectron spectroscopy(XPS). The results of contact angle and in-situ AFM demonstrated that IPXPO adsorbed on chalcopyrite increases surface hydrophobicity and roughness. It was found by CV experiments that a layer passive film was formed. The results of XPS spectra further revealed that the thiol S atom, oxime N atom, and O atom in the IPXPO molecule might react with copper atoms to form Cu-S, Cu-N, and Cu-O bonds, respectively. An artificial mixed minerals flotation test indicated that under the condition of pH=6.79 and IPXPO initial concentration 5×10^(-5)mol/L, the flotation recovery of chalcopyrite reached about 90%, while for pyrite only 25%, suggesting that IPXPO is an excellent collector for flotation separation and enrichment of chalcopyrite.
文摘A single adsorption isothermal study was performed over HY and BEA zeolites in order to determine their adsorption capacities for phenol, ortho-nitrophenol and para-nitrophenol. The experiments were realized in batch reactor and the isotherms were modelized by the Fowler-Guggenheim equation. During the adsorption process weak zeolite-sorbate interactions and more significant sorbate-sorbate attractions were identified. The adsorption was not linked to the molecular size of the sorbates and a strong correlation was established between the adsorption compound was the best adsorbed. The removal performances capacities and the dipole moments of the sorbates. The most polar of the zeolites depended on their hydrophobicity.