It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grou...It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.展开更多
In this paper, a process modeling and related optimizing control for nonuniformly sampled (NUS) systems are addressed. By using a proposed nonuniform integration filter and subspace method estimation, an identificat...In this paper, a process modeling and related optimizing control for nonuniformly sampled (NUS) systems are addressed. By using a proposed nonuniform integration filter and subspace method estimation, an identification method of NUS systems is developed, based on which either an output soft sensor or a hidden state estimator is developed. The optimizing control is implemented by replacing the sparsely-mea- sured/immeasurable variable with the estimated one. Examples of optimizing control problem are given. The proposed optimizing control strategy in the simulation examples is verified to be very effeetive.展开更多
基金supported by Beijing University of Civil Engineering and Architecture Nature Science(ZF16078,X18067)
文摘It is difficult to rescue people from outside, and emergency evacuation is still a main measure to decrease casualties in high-rise building fires. To improve evacuation efficiency, a valid and easily manipulated grouping evacuation strategy is proposed. Occupants escape in groups according to the shortest evacuation route is determined by graph theory. In order to evaluate and find the optimal grouping, computational experiments are performed to design and simulate the evacuation processes. A case study shown the application in detail and quantitative research conclusions is obtained. The thoughts and approaches of this study can be used to guide actual high-rise building evacuation processes in future.
基金Supported by the China Postdoctoral Science Foundation Funded Project (No. 20080440386)
文摘In this paper, a process modeling and related optimizing control for nonuniformly sampled (NUS) systems are addressed. By using a proposed nonuniform integration filter and subspace method estimation, an identification method of NUS systems is developed, based on which either an output soft sensor or a hidden state estimator is developed. The optimizing control is implemented by replacing the sparsely-mea- sured/immeasurable variable with the estimated one. Examples of optimizing control problem are given. The proposed optimizing control strategy in the simulation examples is verified to be very effeetive.