期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
城市道路占道施工条件下基于速度-流量的交通疏解预测模型 被引量:1
1
作者 裴玉龙 何庆龄 +2 位作者 徐慧智 侯琳 杨钰泉 《公路交通科技》 CAS CSCD 北大核心 2023年第1期200-207,270,共9页
为制订供热主管线施工期道路周边比邻主次干路交通组织疏解方案,提供周边道路交通疏解流量数据,采用阈值法和时间序列方法对人工调查得到的交通流量及车速原始调查数据进行预处理,对比分析了区域内道路现状和施工期交通流量和车速频率分... 为制订供热主管线施工期道路周边比邻主次干路交通组织疏解方案,提供周边道路交通疏解流量数据,采用阈值法和时间序列方法对人工调查得到的交通流量及车速原始调查数据进行预处理,对比分析了区域内道路现状和施工期交通流量和车速频率分布,并计算得到了区域内道路饱和度和车速服务水平。以预处理后的调查数据为依据,以区域道路交通服务水平均衡为目标,通过二次曲线拟合方法,构建了占道施工期间道路交通疏解预测模型,预测计算了占道施工期间施工道路疏解交通流量及车速和疏解道路分担交通流量及车速。运用信息熵法计算得到了饱和度和车速服务水平权重为0.4和0.6,以饱和度和车速为衡量指标,以服务水平等级占比为参数,构建了道路交通综合服务水平评价模型。运用数理统计T检验,分析了道路交通实际和疏解预测综合服务水平占比结果的相关性。结果表明:占道施工期间道路交通实际综合服务水平A级、B级、C级、D级、E级、F级占比分别为12.5%,16.3%,10.2%,8.9%,16.0%,35.9%;道路疏解预测综合服务水平A级、B级、C级、D级、E级、F级占比分别为7.2%,17.8%,17.0%,13.6%,14.4%,30.0%;道路交通实际和疏解预测综合服务水平占比结果相关性为0.844,显著性为0.035。基于速度-流量的交通疏解预测模型适用于供热主管线施工期道路周边比邻主次干路交通疏解预测。 展开更多
关键词 城市交通 疏解预测 综合评价 占道施工 服务水平
下载PDF
Using Spatial Data Mining to Predict the Solvability Space of Preconditioned Sparse Linear Systems
2
作者 Shuting Xu SangBaeKim Jun Zhang 《Computer Technology and Application》 2016年第3期139-148,共10页
The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered th... The solution of large sparse linear systems is one of the most important problems in large scale scientific computing. Among the many methods developed, the preconditioned Krylov subspace methods [1] are considered the preferred methods. Selecting an effective preconditioner with appropriate parameters for a specific sparse linear system presents a challenging task for many application scientists and engineers who have little knowledge of preconditioned iterative methods. The purpose of this paper is to predict the parameter solvability space of the preconditioners with two or more parameters. The parameter solvability space is usually irregular, however, in many situations it shows spatial locality, i.e. the parameter locations that are closer in parameter space are more likely to have similar solvability. We propose three spatial data mining methods to predict the solvability of ILUT which make usage of spatial locality in different ways. The three methods are MSC (multi-points SVM classifier), OSC (overall SVM classifier), and OSAC (overall spatial autoregressive classifier). The experimental results show that both MSC and OSAC can obtain 90% accuracy in prediction, but OSAC is much simpler to implement. We focus our work on ILUT preconditioner [2], but the proposed strategies should be applicable to other preconditioners with two or more parameters. 展开更多
关键词 PRECONDITIONER PREDICTION SOLVABILITY SVM spatial autoregressive model.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部