Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 6...Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 66.72, 39.00, 24.38 and 24.40 MPa, respectively. The crack propagation behavior of the alloy was analyzed by optical microscopy. The AZ31B magnesium alloy base metal has a smooth crack propagation macroscopic path. However, the microscopic path is twisted and some cracks have two forks, and the crack propagation is transgranular. The crack initiates in the weld toe and the crack propagates along the HAZ for the BJ and TJ; for the LJ crack initiates in the fillet weld leg. The fatigue fracture mechanisms were analyzed by SEM. The fatigue fracture surface consists of quasi-cleavage patterns or cleavage step and a brittle fracture occurs. Numerous secondary cracks are observed; some fatigue striations exist in butt joint and its size is about 5 μm.展开更多
The effect of laser shock processing(LSP) on the hardness, surface morphology, residual stress, and thermal fatigue properties of a ZCuAl10Fe3Mn2 alloy was investigated to improve the thermal fatigue performance and d...The effect of laser shock processing(LSP) on the hardness, surface morphology, residual stress, and thermal fatigue properties of a ZCuAl10Fe3Mn2 alloy was investigated to improve the thermal fatigue performance and decrease the surface crack of high-temperature components. The microstructure and crack morphology were analyzed by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that laser shock could significantly improve the thermal fatigue performance of the alloy at a pulse energy of 4 J. Under the effect of thermal stress and alternating stress, microstructure around the specimen notch was oxidized and became porous, leading to the formation of multiple micro-cracks. The micro-cracks in the vertical direction became the main cracks, which mainly expanded with the conjoining of contiguous voids at the crack tip front. Micro-cracks in other directions grew along the grain boundaries and led to material shedding.展开更多
The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed b...The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed because of the Si addition. Zn-38Al-2.5Cu-0.55Si alloy shows the dramatically refined microstructure and the best mechanical properties. When the Si addition exceeds 0.55%,αdendrites develop and Si phases become larger and aggregate along the dendrites boundaries, decreasing the mechanical properties. Oxides and pits formed by the plastic deformation are the main factors of cracks initiation. During the early stage of crack propagation, the cracks grow at a high speed well described by Paris law because of the porous and loose oxide, and mainly propagate along the dendrites boundaries. During the slow-growth stage, secondary cracks share the energy of crack growth, delaying the propagation of cracks, and the cracks propagate and fracture by the mixture of intergranular and transgranular modes.展开更多
CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractu...CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.展开更多
Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens ma...Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force?displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fracture initiation, propagation and coalescence corresponds to the change of irreversible deformation.展开更多
In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP...In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension(CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal(BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP.展开更多
While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life o...While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.展开更多
The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning elect...The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning electron microscope and transmission electron microscope. The results show that thicker plate has lower strength and fracture toughness but higher fatigue crack growth resistance, by comparison to the thinner plate. The drop of strength is mainly attributed to grain coarsening in the thicker plate, and the increased degree of recrystallization results in the loss of Kio However, the coarsened grains in the thicker plate make cracks deflected and closure effect enhanced due to surface roughness increased. For both of plates, in the fracture surface subjected plain strain, a transition from transgranular dimpled fracture to intergranular dimpled fracture is observed during the fracture process.展开更多
In-situ SEM (Scanning Electron Microscope) observation of fatigue crack propagation in aluminium alloys reveals that crack growth occurs in a continuous way over the time period during the load cycle. Based on this ob...In-situ SEM (Scanning Electron Microscope) observation of fatigue crack propagation in aluminium alloys reveals that crack growth occurs in a continuous way over the time period during the load cycle. Based on this observation, a new parameter da/dS is introduced to describe the fatigue crack propagation rate, which defines the fatigue crack propagation rate with the change of the applied stress at any moment of a stress cycle. The relationship is given between this new parameter and the conventional used parameter da/dN which describes the fatigue crack propagation rate per stress cycle. Using this new parameter, an analysis has been performed and a model has been set up to consider the effect of the applied stress ratio on the fatigue crack propagation rate. The obtained results have been used to correlate the published test data and a good correlation has been achieved. This method is very easy to use and no fatigue crack closure measurement is needed, therefore this model is significant in engineering application.展开更多
The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron m...The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP) resistance in T3 condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR) decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.展开更多
Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulatio...Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.展开更多
The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results i...The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.展开更多
The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences o...The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fa- tigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sen- sitivity of inclusion size, stress, and AKFGA to the life of VHCF crack initiation.展开更多
基金Project(50675148)supported by the National Natural Science Foundation of China
文摘Fatigue test was carried out on AZ31B magnesium alloy. Under 2×10 6 cycle times, the fatigue strengths of base metal (BM), butt joint (BJ), transverse cross joint (TJ), lateral connection joint (LJ) are 66.72, 39.00, 24.38 and 24.40 MPa, respectively. The crack propagation behavior of the alloy was analyzed by optical microscopy. The AZ31B magnesium alloy base metal has a smooth crack propagation macroscopic path. However, the microscopic path is twisted and some cracks have two forks, and the crack propagation is transgranular. The crack initiates in the weld toe and the crack propagates along the HAZ for the BJ and TJ; for the LJ crack initiates in the fillet weld leg. The fatigue fracture mechanisms were analyzed by SEM. The fatigue fracture surface consists of quasi-cleavage patterns or cleavage step and a brittle fracture occurs. Numerous secondary cracks are observed; some fatigue striations exist in butt joint and its size is about 5 μm.
基金financial supports from the National Natural Science Foundation of China—Youth Project (51801076)the Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province (18KJB430009),China+1 种基金the Postdoctoral Research Support Project of Jiangsu Province (1601055C),Chinathe Senior Talents Research Startup of Jiangsu University (14JDG126),China。
文摘The effect of laser shock processing(LSP) on the hardness, surface morphology, residual stress, and thermal fatigue properties of a ZCuAl10Fe3Mn2 alloy was investigated to improve the thermal fatigue performance and decrease the surface crack of high-temperature components. The microstructure and crack morphology were analyzed by scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that laser shock could significantly improve the thermal fatigue performance of the alloy at a pulse energy of 4 J. Under the effect of thermal stress and alternating stress, microstructure around the specimen notch was oxidized and became porous, leading to the formation of multiple micro-cracks. The micro-cracks in the vertical direction became the main cracks, which mainly expanded with the conjoining of contiguous voids at the crack tip front. Micro-cracks in other directions grew along the grain boundaries and led to material shedding.
基金Project(BC2012211)supported by the Science and Technology Enterprises Innovation Fund of Jiangsu Province,China
文摘The influence of Si addition on microstructure, mechanical properties and thermal fatigue behavior of Zn-38Al-2.5Cu alloys was investigated. The results show that constitutional supercooling of ZA38 alloys is formed because of the Si addition. Zn-38Al-2.5Cu-0.55Si alloy shows the dramatically refined microstructure and the best mechanical properties. When the Si addition exceeds 0.55%,αdendrites develop and Si phases become larger and aggregate along the dendrites boundaries, decreasing the mechanical properties. Oxides and pits formed by the plastic deformation are the main factors of cracks initiation. During the early stage of crack propagation, the cracks grow at a high speed well described by Paris law because of the porous and loose oxide, and mainly propagate along the dendrites boundaries. During the slow-growth stage, secondary cracks share the energy of crack growth, delaying the propagation of cracks, and the cracks propagate and fracture by the mixture of intergranular and transgranular modes.
文摘CuCr alloys are prepared by mechanical alloying and explosive compaction. After we have studied their structure and flaws, the results show that the CuCr alloys have definite strength and toughness, while their fractured surface displays ductile characteristics. In the metallurgical structure, CuCr alloys are composed of two phases of uniform distribution; the SEM morphology is like thin strips with an end arrangement that is bonded to each other and the two-phase distribution of CuCr alloys is more homogenous. It is in only in a very small zone that formation of Cu-rich and Cr-rich phases take place. The flaws of the compaction samples are mainly central-holes and cracks.
基金Projects(50479023, 50708034) supported by the National Natural Science Foundation of ChinaProject(20070532069) supported by Specialized Research Fund for the Doctoral Program of Higher Education+1 种基金Project (20060400263) supported by China Postdoctoral Science FoundationProject(2007RS4031) supported by Provincial Science and Technology Plan of Hunan
文摘Fracture evolution process (initiation, propagation and coalescence) of cracked rock was observed and the force- displacement curves of cracked rock were measured under uniaxial cyclic loading. The tested specimens made of sandstone-like modeling material contained three pre-existing intermittent cracks with different geometrical distributions. The experimental results indicate that the fatigue deformation limit corresponding to the maximal cyclic load is equal to that of post-peak locus of static complete force?displacement curve; the fatigue deformation process can be divided into three stages: initial deformation, constant deformation rate and accelerative deformation; the time of fracture initiation, propagation and coalescence corresponds to the change of irreversible deformation.
基金Project(52075552) supported by the National Natural Science Foundation of ChinaProject(kq2007085) supported by Changsha Municipal Natural Science Foundation,China。
文摘In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening(LSP) on fatigue crack growth(FCG) rate and fracture toughness(K_(c)) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension(CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal(BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP.
基金Project(U21A20132) supported by the National Natural Science Foundation of ChinaProject(Gui Renzi2019(13))supported by the Guangxi Specially-invited Experts Foundation of Guangxi Zhuang Autonomous Region,China。
文摘While pre-deformation is often conducted before aging treatment to increase the strength and microhardness of 2195 Al-Li alloy, it often increases the fatigue crack growth(FCG) rate and thus reduces the fatigue life of the alloy.To determine the effects and causes of pre-deformation and heat treatment on the mechanical properties and FCG rate of2195 Al-Li alloy, and to provide a suitable calculation model for the FCG rate under different pre-deformation conditions, 2195 Al-Li alloy specimens with different degrees of pre-rolling(0, 3%, 6%, and 9%) were investigated. The experimental results indicate that with the increase of pre-rolling, the density of the T1phase and the uniformity of the S′distribution and the microhardness, tensile strength, and yield strength of the alloy increase and at the same time the FCG rate increases, and thus the fatigue life is reduced. It was also found that the normalized stress intensity factor of elastic modulus(E) can be applied to correlate the FCG rate of pre-rolled 2195 Al-Li alloy with constant C and K parameters.
基金Project(2012CB619503)supported by State Key Fundamental Research Program of China
文摘The strength, fracture toughness and fatigue crack growth resistance of 7050-T7451 aluminum alloy plate with different thicknesses (35 mm and 160 ram) were investigated by means of optical microscope, scanning electron microscope and transmission electron microscope. The results show that thicker plate has lower strength and fracture toughness but higher fatigue crack growth resistance, by comparison to the thinner plate. The drop of strength is mainly attributed to grain coarsening in the thicker plate, and the increased degree of recrystallization results in the loss of Kio However, the coarsened grains in the thicker plate make cracks deflected and closure effect enhanced due to surface roughness increased. For both of plates, in the fracture surface subjected plain strain, a transition from transgranular dimpled fracture to intergranular dimpled fracture is observed during the fracture process.
基金the National Natural Science Foundation of China (Grant No. 10772063, 10572068, and 10772064)
文摘In-situ SEM (Scanning Electron Microscope) observation of fatigue crack propagation in aluminium alloys reveals that crack growth occurs in a continuous way over the time period during the load cycle. Based on this observation, a new parameter da/dS is introduced to describe the fatigue crack propagation rate, which defines the fatigue crack propagation rate with the change of the applied stress at any moment of a stress cycle. The relationship is given between this new parameter and the conventional used parameter da/dN which describes the fatigue crack propagation rate per stress cycle. Using this new parameter, an analysis has been performed and a model has been set up to consider the effect of the applied stress ratio on the fatigue crack propagation rate. The obtained results have been used to correlate the published test data and a good correlation has been achieved. This method is very easy to use and no fatigue crack closure measurement is needed, therefore this model is significant in engineering application.
基金Project(2005CB623705) supported by the National Basic Research Program of China
文摘The fatigue behaviors of 2E12 aluminum alloy in T3 and T6 conditions at room temperature in air were investigated.The microstructures and fatigue fracture surfaces of the alloy were examined by transmission electron microscopy(TEM) and scanning electron microscopy(SEM).The results show that the alloy exhibits higher fatigue crack propagation(FCP) resistance in T3 condition than in T6 condition,the fatigue life is increased by 54% and the fatigue crack growth rate(FCGR) decreases significantly.The fatigue fractures of the alloy in T3 and T6 conditions are transgranular.But in T3 condition,secondary cracks occur and fatigue striations are not clear.In T6 condition,ductile fatigue striations are observed.The effect of aging conditions on fatigue behaviors is explained in terms of the slip planarity of dislocations and the cyclic slip reversibility.
文摘Friction stir welding (FSW) was performed on 2024-T351 aluminum alloy plates. Metallographic analysis, Vickers microhardness and XRD tests were conducted to determine the properties of the welded zone. FE simulation of the FSW process was implemented for the different welding conditions to extract the residual stress and stress intensity factor (SIF). Fracture and fatigue behaviors of the welds which have the initial crack in the nugget zone and the crack orientation along the welding direction, were studied based on standard test methods. Fracture behavior of the welds was also evaluated by shearography method. The results showed that the tool rotational and traverse speeds affect the fracture toughness and fatigue crack growth rate. FSW provides 18%-49% reductions in maximum fracture load and fracture toughness. A slight diminution in fracture toughness of the joints was observed for lower traverse speed of the tool, and at higher traverse or rotational speeds, increasing the probability of defects may contribute to low fracture toughness. Fatigue crack propagation rate of all welds was slower than that of the base metal for low values of stress intensity factor range ΔK (ΔK〈13 MPa·m^1/2), but is much faster for high values of ΔK.
基金Supported by the National Natural Science Foundation of China(No.61170328)
文摘The purpose of using life extending control for Black Hawk UH-60 helicopter is to make a trade-off between the handling qualities and the service life of critical components. An increase in service life span results in enhanced safety and the reduction in maintenance costs. This paper presents a design methodology of life extending control for structural durability and high performance of mechanical system, which is based on an explicit dynamic inversion control scheme. A real-time nonlinear fatigue crack growth model is built to predict fatigue damage resulting from the impact of cyclic bending stress on rotor shaft, which serves as an indicator of service life. The 4-axis gainscheduled flight controller, whose gains are adjusted as a function of damage and flight velocity, is designed to regulate roll attitude, pitch attitude, vertical velocity and yaw rate. The nonlinear system simulation results show that the responses can meet the requirements on ADS-33 Level 1 handling qualities and that the 4-axis decoupling control is realized. As the damage increases, the tracking performance is slightly degraded, which results in smaller transients in bending moment response.
基金supported by the National Basic Research Program of China(Grant No.2012CB937500)the National Natural Science Foundation of China(Grant Nos.11172304,11021262 and 11202210)
文摘The specimens of a high carbon chromium steel were quenched and tempered at 150℃, 180℃ and 300℃. Such specimens were tested via rotating bending and a push-pull type of axial loading to investigate the influences of loading condition on the behaviour of very-high-cycle fatigue (VHCF). Experimental results show the different influences of inclusion size on the fa- tigue life for the two loading conditions. Predominant factors and mechanism for the fine-granular-area (FGA) of crack origin were discussed. In addition, a reliability analysis based on a modified Tanaka-Mura model was carried out to evaluate the sen- sitivity of inclusion size, stress, and AKFGA to the life of VHCF crack initiation.