期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的SVM疾病症状分类模型
被引量:
5
1
作者
张强强
苏变萍
李敏
《传感器与微系统》
CSCD
2020年第3期64-67,71,共5页
为解决疾病症状分类时传统特征提取方法存在特征维度较高和数据稀疏的问题,以及结合卷积神经网络(CNN)和支持向量机(SVM)的优势,提出了一种基于卷积神经网络的SVM疾病症状分类模型。用Skip-Gram根据维基中文语料库训练词向量,构成疾病...
为解决疾病症状分类时传统特征提取方法存在特征维度较高和数据稀疏的问题,以及结合卷积神经网络(CNN)和支持向量机(SVM)的优势,提出了一种基于卷积神经网络的SVM疾病症状分类模型。用Skip-Gram根据维基中文语料库训练词向量,构成疾病症状文本二维特征矩阵,即卷积神经网络的输入层;通过卷积层提取文本特征,使用1-max pooling策略在池化层得到文本的局部最优特征;将局部最优特征组成融合特征向量作为SVM分类器的输入得到分类结果。经过与传统特征提取算法和CNN算法的实验结果的对比,验证了提出的模型在准确率、召回率和F1三个评价指标上均有显著提高。
展开更多
关键词
疾病症状分类
词向量
卷积神经网络
支持向量机
Skip-Gram模型
下载PDF
职称材料
题名
基于卷积神经网络的SVM疾病症状分类模型
被引量:
5
1
作者
张强强
苏变萍
李敏
机构
西安建筑科技大学理学院
出处
《传感器与微系统》
CSCD
2020年第3期64-67,71,共5页
基金
陕西省社会科学基金资助项目(13D175)。
文摘
为解决疾病症状分类时传统特征提取方法存在特征维度较高和数据稀疏的问题,以及结合卷积神经网络(CNN)和支持向量机(SVM)的优势,提出了一种基于卷积神经网络的SVM疾病症状分类模型。用Skip-Gram根据维基中文语料库训练词向量,构成疾病症状文本二维特征矩阵,即卷积神经网络的输入层;通过卷积层提取文本特征,使用1-max pooling策略在池化层得到文本的局部最优特征;将局部最优特征组成融合特征向量作为SVM分类器的输入得到分类结果。经过与传统特征提取算法和CNN算法的实验结果的对比,验证了提出的模型在准确率、召回率和F1三个评价指标上均有显著提高。
关键词
疾病症状分类
词向量
卷积神经网络
支持向量机
Skip-Gram模型
Keywords
classification of disease symptoms
word vector
convolutional neural network(CNN)
support vector machine(SVM)
Skip-Gram model
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的SVM疾病症状分类模型
张强强
苏变萍
李敏
《传感器与微系统》
CSCD
2020
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部