期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
基于分层特征交叉注意力的小样本马铃薯病害叶片识别
1
作者 李坤 刘婧 齐赫 《江苏农业科学》 北大核心 2024年第10期210-216,共7页
为了及时、准确地识别马铃薯叶片病害,有效预防马铃薯早期病变并提高马铃薯的产量和质量,针对传统马铃薯病害叶片识别方法过度依赖标注样本和特征利用不充分的问题,提出一种基于分层特征交叉注意力的小样本马铃薯病害叶片识别方法。首先... 为了及时、准确地识别马铃薯叶片病害,有效预防马铃薯早期病变并提高马铃薯的产量和质量,针对传统马铃薯病害叶片识别方法过度依赖标注样本和特征利用不充分的问题,提出一种基于分层特征交叉注意力的小样本马铃薯病害叶片识别方法。首先,利用VGG-16网络的不同编码块,将支持分支和查询分支的马铃薯叶片映射到深度特征空间,并按照不同块的输出构造分层特征集;其次,设计一种交叉注意力网络,实现双分支网络分层特征之间的信息交互,强化特征的表达;最后,利用掩码平均池化获得交互特征的全局信息,并借助无参数的度量学习指导未知马铃薯病害叶片类型的识别。通过在AI Challenger 2018开源数据集、自建小样本马铃薯数据集上进行测试,所提出模型分别可以实现0.973、0.951的识别精度,优于当前主流的马铃薯病害叶片识别模型,具有较好的实际应用价值。 展开更多
关键词 马铃薯病害叶片识别 小样本学习 分层特征 交叉注意力网络
下载PDF
基于多模态特征对齐的作物病害叶片检测
2
作者 周一帆 刘东洋 周宇平 《中国农机化学报》 北大核心 2024年第7期180-187,共8页
针对现有农作物病害叶片检测方法利用图像特征定位叶片病害区域精度不高的问题,提出一种基于多模态特征对齐的作物病害叶片检测新方法。在训练阶段,利用视觉编码器和文本编码器将农作物叶片集中的图片和文本进行编码,并根据视觉编码特... 针对现有农作物病害叶片检测方法利用图像特征定位叶片病害区域精度不高的问题,提出一种基于多模态特征对齐的作物病害叶片检测新方法。在训练阶段,利用视觉编码器和文本编码器将农作物叶片集中的图片和文本进行编码,并根据视觉编码特征定位给定图片中的病害区域,利用视觉和文本编码融合特征实现病害区域病害类型的细粒度分类。在推理阶段,利用预训练的病害区域定位模块定位给定测试图片中的病害区域,并将其提取的病害区域作为预训练分类模型的输入;通过计算预测文本值与文本集中原始标签之间的相似度值,快速给出病害区域的细粒度分类结果。在多个开源的农作物病害数据集上进行测试,所提出方法在马铃薯、番茄、苹果和草莓四种类型的病害叶片数据集上精准率分别为0.9574、0.9611、0.9580和0.9502,综合性能更优,具有较好实用价值。 展开更多
关键词 病害叶片检测 多模态特征 视觉编码特征 文本编码特征 细粒度分类
下载PDF
基于WT-Otsu算法的植物病害叶片图像分割方法 被引量:13
3
作者 张会敏 谢泽奇 +1 位作者 张善文 张云龙 《江苏农业科学》 北大核心 2017年第18期194-196,共3页
植物病害叶片图像分割是植物病害识别和植物分类的基础。为了解决作物病斑叶片的分割效率和实时性,在小波变换(wavelet transform)和Otsu法的基础上,提出一种基于WT-Otsu算法的植物病害叶片图像分割方法。首先,利用二维小波变换提取作... 植物病害叶片图像分割是植物病害识别和植物分类的基础。为了解决作物病斑叶片的分割效率和实时性,在小波变换(wavelet transform)和Otsu法的基础上,提出一种基于WT-Otsu算法的植物病害叶片图像分割方法。首先,利用二维小波变换提取作物病斑图像的边缘点;其次,利用Otsu法在这些边缘点搜索最佳分割阈值;最后,利用该阈值分割图像。利用该方法在真实辣椒病害叶片图像上进行了分割试验,结果表明,该方法对病害叶片图像分割有效可行。 展开更多
关键词 病害叶片图像分割 OTSU法 小波变换(WT) 最佳分割阈值
下载PDF
基于水平集和视觉显著性的植物病害叶片图像分割 被引量:7
4
作者 周强强 王志成 +1 位作者 赵卫东 陈宇飞 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第9期1406-1413,共8页
为了提高植物病害叶片图像分割的准确性和效率,提出了一种基于水平集和视觉显著性的彩色图像分割方法.首先采用基于小波变换的显著性检测算法得到活动轮廓模型中曲线演化的初始位置,并构造一个基于显著区域的图像活动轮廓模型,再设计一... 为了提高植物病害叶片图像分割的准确性和效率,提出了一种基于水平集和视觉显著性的彩色图像分割方法.首先采用基于小波变换的显著性检测算法得到活动轮廓模型中曲线演化的初始位置,并构造一个基于显著区域的图像活动轮廓模型,再设计一个向量值图像的边界检测算子,引入到距离正则化水平集演化的改造中,以构造一个初始化轮廓更灵活,演化速度更快,目标分割更精确的新的水平集能量泛函.最后的实验对比表明,该方法具有较好的叶片病害部位分割效果. 展开更多
关键词 植物病害叶片 图像分割 显著性检测 距离正则化水平集演化(DRLSE)
下载PDF
基于改进K中值聚类的苹果病害叶片分割方法 被引量:8
5
作者 张善文 张晴晴 +1 位作者 齐国红 周伟 《江苏农业科学》 北大核心 2017年第18期205-208,共4页
针对复杂背景下的苹果病害叶片分割问题,提出一种基于改进的K均值聚类的苹果病害叶片病斑分割方法。首先将原始叶片图像由RGB(R为红,G为绿,B为蓝)颜色空间转换到Lab(L为亮度,a为从洋红色至绿色的范围,b为从黄色至蓝色的范围)颜色空间,... 针对复杂背景下的苹果病害叶片分割问题,提出一种基于改进的K均值聚类的苹果病害叶片病斑分割方法。首先将原始叶片图像由RGB(R为红,G为绿,B为蓝)颜色空间转换到Lab(L为亮度,a为从洋红色至绿色的范围,b为从黄色至蓝色的范围)颜色空间,然后在Lab颜色空间中利用ab二维数据空间的颜色差异,以欧式距离度量像素间的相似度,使用K均值对图像进行聚类,利用数学形态学中的开闭交替滤波方法对聚类后的灰度图像进行校正,最后得到图像病斑。对3种常见苹果病害叶片图像进行分割,并与其他分割方法进行比较。结果表明,该方法效果好,其误分率为8.41%。 展开更多
关键词 K均值聚类 苹果病害叶片图像 病斑分割 改进的K中值聚类
下载PDF
基于颜色均值显著点聚类的作物病害叶片图像分割方法 被引量:1
6
作者 张善文 张晴晴 齐国红 《安徽农业科学》 CAS 2019年第10期228-230,共3页
作物病害叶片图像分割是病害类型识别方法的一个重要步骤,其分割效果直接影响后续的识别结果。病害叶片图像的复杂多样性使得很多现有的图像分割方法不能有效应用于作物病害叶片图像分割中。针对复杂的自然病害叶片图像分割难题,提出一... 作物病害叶片图像分割是病害类型识别方法的一个重要步骤,其分割效果直接影响后续的识别结果。病害叶片图像的复杂多样性使得很多现有的图像分割方法不能有效应用于作物病害叶片图像分割中。针对复杂的自然病害叶片图像分割难题,提出一种基于颜色均值显著点聚类的作物病害叶片图像分割方法。该方法建立在HIS颜色空间,首先构造基于像素点HIS模型的带权无向图,然后计算病害叶片图像像素点的邻域的颜色均值,再计算该点前后两个邻域的颜色均值差作为该点的颜色跳跃度,当跳跃度大于设置的一个阈值时,该像素点为病斑点。结果表明,该算法具有较高的分割精确度和较好的抗噪声性能。 展开更多
关键词 病害叶片图像分割 显著点 颜色均值显著点聚类 颜色跳跃度
下载PDF
扁豆病害叶片的病斑剥离分割 被引量:2
7
作者 李学俊 赵礼良 《计算机工程与应用》 CSCD 2014年第23期181-184,188,共5页
传统的分割方法针对目标和背景灰度值差距大的图像能得到较好的分割效果,但在对正常叶片和病斑灰度值相似度高的扁豆病害叶片图像分割时,难以得到理想的目标病斑。针对该问题,提出了一种适合正常叶片和病斑相似度高的图像剥离分割方法... 传统的分割方法针对目标和背景灰度值差距大的图像能得到较好的分割效果,但在对正常叶片和病斑灰度值相似度高的扁豆病害叶片图像分割时,难以得到理想的目标病斑。针对该问题,提出了一种适合正常叶片和病斑相似度高的图像剥离分割方法。该方法包括初始分割和二次分割两个步骤。初始分割是基于样本图片的彩色梯度图,采用最大类间标准方差与分水岭相结合的算法获得病斑粗略区域。二次分割是对粗略目标区域进行模糊C聚类分割得到目标病斑。实验结果表明,该剥离分割算法能提高病斑分割精确度,较好地分割出病斑目标。 展开更多
关键词 扁豆病害叶片 图像分割 彩色梯度 分水岭 模糊C聚类
下载PDF
基于引力核密度聚类算法的作物病害叶片区域的快速检测
8
作者 刘哲 黄文准 王利平 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第4期488-494,共7页
针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合... 针对作物病害叶片图像的复杂性和模糊性,提出一种基于引力核密度聚类算法的作物叶片病害区域快速检测方法:首先,在RGB颜色空间提取病害叶片图像的R通道值,根据R值的特征直方图特性,运用多项式拟合特征直方图曲线,根据导数性质确定拟合特征直方图曲线的峰值点和峰值区域,确定病害叶片图像聚类数和初始聚类中心;根据初步确定的病变叶片图像的聚类中心,运用引力核密度聚类算法快速完成对病害叶片病斑的分割。试验结果表明,基于引力核密度聚类算法的平均分割精度达80%以上,平均检测时间为4.912 s,优于已有病害区域分割算法K–means和Meanshift的性能。 展开更多
关键词 引力核密度聚类算法 作物病害叶片 图像分割 颜色空间
下载PDF
基于深度学习的农作物病害叶片的图像超分辨率重建 被引量:1
9
作者 代强 乔焰 +1 位作者 程曦 朱诚 《黑龙江八一农垦大学学报》 2020年第2期82-90,共9页
为了降低农作物病害所带来的损失,借助计算机对农作物病害叶片图像进行图像超分辨率重建具有重要意义。针对基于农作物病害叶片图像的超分辨率重建问题,引入了基于深度学习的农作物病害叶片图像超分辨率重建方法。通过实验将基于深度学... 为了降低农作物病害所带来的损失,借助计算机对农作物病害叶片图像进行图像超分辨率重建具有重要意义。针对基于农作物病害叶片图像的超分辨率重建问题,引入了基于深度学习的农作物病害叶片图像超分辨率重建方法。通过实验将基于深度学习的超分辨率重建方法与两个传统方法Bicubic和ScSR做了对比,实验结果表明,两个传统方法的PSNR值均未超过15,且SSIM值均未超过0.6。而基于深度学习的网络模型LapSRN、DSRNLP和SERS所得出的PSNR值均接近30,SSIM值均超过了0.6,相比传统方法,性能得到明显提升。 展开更多
关键词 病害叶片图像 超分辨率重建 深度学习 LapSRN DSRNLP SERS
下载PDF
基于特征分离的小样本苹果病害叶片检测 被引量:1
10
作者 黄炜 王娟娟 殷学丽 《江苏农业科学》 北大核心 2023年第23期195-202,共8页
准确检测出苹果叶片的病害有助于促进苹果保质、增产,提高果农的经济收益。针对现有苹果病害叶片检测模型精度不高的问题,提出一种基于特征分离的小样本苹果病害叶片检测算法。首先,利用VGG-16和Swin Transformer网络将苹果病害叶片映... 准确检测出苹果叶片的病害有助于促进苹果保质、增产,提高果农的经济收益。针对现有苹果病害叶片检测模型精度不高的问题,提出一种基于特征分离的小样本苹果病害叶片检测算法。首先,利用VGG-16和Swin Transformer网络将苹果病害叶片映射到全局和局部特征空间,并设计了一种特征交叉融合网络来融合全局和局部特征;然后,提出一种复杂特征的细粒度特征分离方法,通过借助苹果病害叶片的文本标签和病害区域标签将融合的深度特征分离为叶片病害分类特征和叶片病害区域特征;最后,采用对比损失实现复杂特征的分离和模型端到端的优化。通过在Plant Village开源数据集上进行试验,结果表明,所提出方法可以实现96.35%的精准率、95.76%的召回率和96.02%的F1分数,相比当前经典的目标分类模型,所提出模型综合性能表现良好。此外,该模型的提出为苹果病害叶片的细粒度分类提供一种新的思路,并且可以为田间农作物病害检测系统提供技术支撑。 展开更多
关键词 苹果病害 病害叶片检测 特征分离 特征交叉融合 全局和局部特征 小样本
下载PDF
一种基于深度学习的分割植物病害叶片方法
11
作者 傅悦 李兴春 《五邑大学学报(自然科学版)》 CAS 2023年第4期53-58,共6页
为提高植物病害叶片分割模型的分割准确率和效率,本文提出了一种基于深度过参数化卷积来替代传统卷积的植物叶片病害图像分割模型.为了更好地提取图像高层和底层语义特征,在传统卷积上添加深度卷积,用深度过参数卷积层替换传统卷积层,... 为提高植物病害叶片分割模型的分割准确率和效率,本文提出了一种基于深度过参数化卷积来替代传统卷积的植物叶片病害图像分割模型.为了更好地提取图像高层和底层语义特征,在传统卷积上添加深度卷积,用深度过参数卷积层替换传统卷积层,增加模型可学习的参数数量,并添加注意力机制.实验结果表明,该模型对各类病害的平均识别准确率达到92.16%,分割均交并比达到70.4%,模型性能优于以传统卷积为基础的分割模型,参数量更少,运行时间更短,效率更高. 展开更多
关键词 图像分割 深度学习 神经网络 叶片病害 深度过参数化卷积
下载PDF
基于改进ShuffleNet v2的轻量化番茄叶片病害识别 被引量:1
12
作者 李大华 仲婷 +1 位作者 王笋 于晓 《江苏农业科学》 北大核心 2024年第3期220-228,共9页
番茄大面积种植导致叶片部位被病虫害侵蚀面积不一、侵蚀种类多样化等问题,为了满足在资源有限的硬件设备上实现对番茄叶片病害准确识别,提出改进ShuffleNet v2模型。首先对基本单元进行改进,提出SA-stage模块,使模型密切关注叶片相关... 番茄大面积种植导致叶片部位被病虫害侵蚀面积不一、侵蚀种类多样化等问题,为了满足在资源有限的硬件设备上实现对番茄叶片病害准确识别,提出改进ShuffleNet v2模型。首先对基本单元进行改进,提出SA-stage模块,使模型密切关注叶片相关特征信息的同时减小了参数量和计算量;其次提出LFN轻量化特征融合模块,实现浅层和深层网络的上下文信息交互;接着引入RFB-s轻量化特征增强模块,增强小目标病害的特征提取;最后将SPD-Conv代替普通卷积和最大池化层,降低图像分辨率的同时保留了番茄叶片病害小目标的细粒度信息。试验结果表明,改进ShuffleNet v2模型在10种番茄叶片病害图像上进行测试,准确率和平均召回率分别达到了96.55%、96.40%,较原模型分别提高了4.44、3.70百分点;参数量和计算量分别为348154、38.75 MB,较原模型分别减少3888、3.88 MB。相比于其他分类模型AlexNet、ResNet50、MobileNet v3等,改进ShuffleNet v2模型不仅准确率最高、参数量和计算量最小,而且权重最小,仅为1.51 MB。该研究提出的改进ShuffleNet v2模型具备在资源有限的移动设备上部署的条件,满足实时、准确地识别番茄叶片病害。 展开更多
关键词 番茄 叶片病害 病害识别 轻量化 参数量
下载PDF
基于特征融合Transformer的EfficientNet v2网络对马铃薯叶片病害的识别 被引量:1
13
作者 孙剑明 毕振宇 牛连丁 《江苏农业科学》 北大核心 2024年第8期166-176,共11页
马铃薯叶片病害是影响马铃薯质量和产量的主要因素,为了能够快速准确地识别马铃薯叶片病害并采取对应的防控和救治措施,本研究提出一种新型马铃薯叶片病害识别方法。该方法利用EfficientNet v2网络提取图像特征,通过4个不同尺度的网络... 马铃薯叶片病害是影响马铃薯质量和产量的主要因素,为了能够快速准确地识别马铃薯叶片病害并采取对应的防控和救治措施,本研究提出一种新型马铃薯叶片病害识别方法。该方法利用EfficientNet v2网络提取图像特征,通过4个不同尺度的网络层进行金字塔融合,从而捕捉不同尺度下的图像细节和上下文信息,并在金字塔融合中的每个下采样环节都添加1个CBAM注意力机制模块,且每个CBAM模块后都加入Vision Transformer的Encoder模块进行特征增强,帮助提升所提取特征的丰富性和抽象能力,最后使用softmax进行分类。研究提出的模型识别准确率达到98.26%,相比改进之前提升3.47百分点,且其loss收敛更快,宏平均值与加权平均值都有明显提升。消融试验表明,该模型在各项指标上的表现最优,超过基线模型和融合模型,大幅提高图像分类识别任务模型的性能表现。该方法可有效提高病害区域的识别能力和检测准确率,且能在强干扰的环境下做到高精度识别,具有良好的鲁棒性和适应性,同时能解决病害识别中泛化能力弱、精度低、计算效率低等问题。 展开更多
关键词 农业 马铃薯叶片病害 图像识别 卷积神经网络 特征融合 Transformer模型
下载PDF
基于改进SSD模型的柑橘叶片病害轻量化检测模型
14
作者 李大华 孔舒 +1 位作者 李栋 于晓 《浙江农业学报》 CSCD 北大核心 2024年第3期662-670,共9页
针对当前目标检测算法存在模型占比大,对柑橘叶片病害检测速度较慢、精度较低等问题,提出了一种基于改进SSD(single shot multibox detector)的柑橘叶片病害轻量化检测方法。引入了轻量化卷积神经网络MobileNetV2作为SSD网络的骨架,以... 针对当前目标检测算法存在模型占比大,对柑橘叶片病害检测速度较慢、精度较低等问题,提出了一种基于改进SSD(single shot multibox detector)的柑橘叶片病害轻量化检测方法。引入了轻量化卷积神经网络MobileNetV2作为SSD网络的骨架,以减小模型规模、提高检测速度。引入感受野模块(receptive field block,RFB)来扩大浅层特征感受野,以提高模型对小目标的检测效果。并引入CA(coordinate attention)注意力机制,以强化不同深度的特征信息,进一步提升柑橘叶片病害的识别精度。结果表明,与VGG16-SSD相比,改进模型(MR-CA-SSD)在柑橘叶片病害检测上平均精度均值(mAP)提升4.4百分点,模型占比减小52.3 MB,每秒检测帧数提升3.15。MR-CA-SSD综合性能也优于YOLOv4、CenterNet、Efficientnet-YoloV3等模型。该改进模型可实现对柑橘叶片病害的快速准确诊断,有助于对病害部位及时精准施药。 展开更多
关键词 柑橘 叶片病害 轻量化网络 感受野模块 注意力机制
下载PDF
基于层间特征蒸馏网络的作物叶片病害检测
15
作者 冯玉涵 孙剑 张志芳 《中国农机化学报》 北大核心 2024年第9期271-277,共7页
针对现有农作物叶片病害检测方法对有限标注样本利用不充分,导致模型识别精度不高、泛化性不强的问题,提出一种基于层间特征蒸馏网络的作物叶片病害检测方法。该方法采用支持分支和查询分支相互监督的元学习网络结构,首先,利用一组共享... 针对现有农作物叶片病害检测方法对有限标注样本利用不充分,导致模型识别精度不高、泛化性不强的问题,提出一种基于层间特征蒸馏网络的作物叶片病害检测方法。该方法采用支持分支和查询分支相互监督的元学习网络结构,首先,利用一组共享权重的特征提取网络将双分支网络的输入图片映射到深度特征空间,并采用多层下采样操作构造多尺度特征集;然后,在每层特征中计算自注意力机制,在层间计算交叉注意力机制,旨在强化不同尺度内和尺度间特征表达的鲁棒性和可靠性;最后,在跨尺度特征中引入知识蒸馏网络,旨在利用高层特征丰富浅层特征的语义信息,间接地增强不同尺度内和尺度间特征表达的鲁棒性。在马铃薯、苹果、番茄和玉米病害数据集上进行测试,所提方法分别获得0.9531、0.9668、0.9552和0.9542的识别精准率。 展开更多
关键词 病害叶片检测 知识蒸馏 交叉注意力 自注意力 知识反馈
下载PDF
改进残差网络甜瓜叶片病害的识别研究
16
作者 黄英来 姜忠良 《计算机工程与应用》 CSCD 北大核心 2024年第15期189-197,共9页
针对甜瓜叶片不同程度的病害识别研究较少,人工检测实时性差且存在识别准确率较低等问题,提出了一种基于改进残差网络模型的甜瓜叶片病害识别方法。将传统的ResNet50模型作为骨干网络,将ReLU激活函数替换为ELU激活函数;将ResNet50的模... 针对甜瓜叶片不同程度的病害识别研究较少,人工检测实时性差且存在识别准确率较低等问题,提出了一种基于改进残差网络模型的甜瓜叶片病害识别方法。将传统的ResNet50模型作为骨干网络,将ReLU激活函数替换为ELU激活函数;将ResNet50的模型的第一层卷积中的7×7卷积核替换成Incption结构,在全连接层之后加入Dropout层,增强模型的表达能力并缓解过拟合问题;引入多头自注意力机制(MHSA),提高模型的泛化能力。进行数据预处理,将训练集与测试集的比例划分为7∶3,采用数据增强的方式对小样本数据集进行扩充。实验结果表明:改进的残差网络模型准确率与原模型相比提高了1.03个百分点,识别准确率达到98.72%且模型参数量为19.3MB。与其他网络模型相比准确率大幅提升,可以为甜瓜叶片病害的高效识别和及时预防治理提供参考。 展开更多
关键词 甜瓜叶片病害 图像识别 残差网络 多头自注意力机制 深度学习
下载PDF
基于CNN-XGBoost模型的多类型棉花叶片病害识别
17
作者 戴臻 费洪晓 《江苏农业科学》 北大核心 2024年第13期205-213,共9页
为提高棉花生产和质量,需要对棉花叶片病害进行及时和准确的识别。然而,现有研究方法往往只能处理少数几种常见的病害类型,而无法覆盖更多的病害种类。本研究提出一种基于CNN-XGBoost模型的多类型棉花叶片病害识别方法,该方法能够识别... 为提高棉花生产和质量,需要对棉花叶片病害进行及时和准确的识别。然而,现有研究方法往往只能处理少数几种常见的病害类型,而无法覆盖更多的病害种类。本研究提出一种基于CNN-XGBoost模型的多类型棉花叶片病害识别方法,该方法能够识别出21种不同的病害类型,涵盖了细菌、真菌、病毒、营养缺乏等多种因素导致的病害。首先,收集约1.2万张棉花叶片病害图像样本,构建一个包含多种类型病害的数据集,对数据集进行预处理和增强操作,增加数据的多样性和难度;其次,设计一个CNN模型,利用卷积层和池化层提取棉花叶片图像的特征向量,将CNN模型的输出作为XGBoost模型的输入,使用XGBoost模型对特征向量进行分类;最后,采用加权交叉熵损失函数作为优化目标,通过反向传播算法更新CNN模型和XGBoost模型的参数。结果表明,本研究提出的CNN-XGBoost模型在21种类型棉花叶片病害上都能达到高精度的识别,平均准确率达到0.98,远高于其他对比方法,为棉花生产者提供了一个实用和高效的植物病害诊断工具,有助于及时发现和处理棉花叶片病害,从而提高棉花产量。 展开更多
关键词 CNN-XGBoost 棉花叶片病害 多类型病害 加权交叉熵损失函数
下载PDF
基于改进ATSS模型的水稻叶片病害检测 被引量:1
18
作者 丁士宁 姜明富 +1 位作者 刘丽娟 张莉 《山东农业大学学报(自然科学版)》 北大核心 2024年第1期93-99,共7页
针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAF... 针对传统水稻病害诊断方法依赖人工、容易误判等缺点,提出一种基于ATSS的水稻叶片病害检测模型。首先收集白叶枯病、胡麻斑病、叶瘟病这三种病害图像,构建水稻叶片病害图像数据集。然后在原ATSS模型的基础上,网络Neck部分采用FPN-CARAFE模块代替特征金字塔网络FPN,以减少上采样过程中的信息损失。同时,为提升模型的检测效果,回归分支的损失函数采用CIoU损失函数代替GIoU。改进ATSS模型的平均精度均值可达74.0%,相比于原ATSS模型提升了3.5%。与模型Retinanet、Faster R-CNN、Cascade R-CNN、FCOS、TOOD相比,改进ATSS模型取得了最高的检测精度,且在检测精度和速度上取得了最高的权衡。实验结果表明,改进后的模型能对水稻叶片病害有效检测。 展开更多
关键词 改进ATSS模型 FPN-CARAFE CIoU损失函数 水稻叶片病害
下载PDF
基于改进RegNet网络的玉米叶片病害识别研究
19
作者 张澳雪 崔艳荣 +3 位作者 李素若 陈华锋 胡玉荣 胡蓉华 《江苏农业科学》 北大核心 2024年第11期216-224,共9页
针对目前玉米叶片病害识别模型参数量大、移动端部署难、识别准确率不够高等问题,提出一种基于轻量化网络RegNet和迁移学习的识别方法,首先收集4类常见玉米叶片病害图像样本,通过平移、镜像、旋转等方式对图像进行处理,以增加图片数量,... 针对目前玉米叶片病害识别模型参数量大、移动端部署难、识别准确率不够高等问题,提出一种基于轻量化网络RegNet和迁移学习的识别方法,首先收集4类常见玉米叶片病害图像样本,通过平移、镜像、旋转等方式对图像进行处理,以增加图片数量,提升模型识别和泛化能力。接着以轻量化网络RegNet为主体,采用Inception A结构对stem中的3×3卷积进行替换,增加模型宽度,以分解卷积的形式对玉米叶片病害进行多尺度特征提取。最后在head中引入金字塔池化模块(pyramid pooling module,PPM),用于减少空间信息丢失,保留病害重要特征和细节。试验结果表明,改进后的模型相比RegNet,Top-1准确率提升1.26百分点,平均精确率提升1.34百分点,平均F1分数提升1.33百分点,平均召回率提升1.34百分点,参数量只增加了0.89×10^(6),改进后的模型具有更好的特征提取能力,该模型为玉米叶片病害类型的识别提供了一种有效的方法。 展开更多
关键词 玉米 叶片病害 图像分类 RegNet Inception v3 金字塔池化
下载PDF
基于MA-ConvNext网络和分步关系知识蒸馏的苹果叶片病害识别
20
作者 刘欢 李云红 +4 位作者 张蕾涛 郭越 苏雪平 朱耀麟 侯乐乐 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第9期1757-1767,1780,共12页
针对复杂环境下苹果叶片病害图像背景杂乱、病斑大小不一,以及现有模型参数多、计算量大的问题,提出基于注意力和多尺度特征融合的苹果叶片病害识别网络(MA-ConvNext).通过引入多尺度空间通道重组块(MSCB)和融合三分支注意力机制的特征... 针对复杂环境下苹果叶片病害图像背景杂乱、病斑大小不一,以及现有模型参数多、计算量大的问题,提出基于注意力和多尺度特征融合的苹果叶片病害识别网络(MA-ConvNext).通过引入多尺度空间通道重组块(MSCB)和融合三分支注意力机制的特征提取模块(TAFB),有效提取苹果叶片病害图像不同尺度的特征,增强模型对叶片病斑的关注.采用分步关系知识蒸馏方法,将“教师”网络(MA-ConvNext)和“中间”网络(DenseNet121)融合,指导“学生”网络(EfficientNet-B0)训练,实现模型轻量化.实验结果表明,MA-ConvNext网络识别准确率为99.38%,较ResNet50、MobileNet-V3和EfficientNet-V2网络分别提高了3.98个百分点、7.55个百分点和4.27个百分点.经过分步关系知识蒸馏后,识别准确率较蒸馏前提高了1.76个百分点,并且具有更小的网络规模和参数量,分别为1.56×10^(7)、5.29×10^(6).所提方法能为后续精准农业的病虫害检测提供新思路和技术支持. 展开更多
关键词 苹果叶片病害识别 注意力 多尺度特征融合 分步关系 知识蒸馏
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部