期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于精细化特征信息提取的健康和病害肉快速判别方法
1
作者
薛文东
洪德明
+4 位作者
陈本能
洪永强
艾连峰
陈美芳
王鑫
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期170-178,共9页
[目的]针对健康肉与病害肉的快速鉴别问题,本文对健康与病害肉的表面拉曼谱图的特征信息提取和分类方法进行研究,以实现对健康肉与病害肉的快速鉴别.[方法]以羊肉的表面增强拉曼谱图为样本,分别采用主成分分析-支持向量机和卷积神经网...
[目的]针对健康肉与病害肉的快速鉴别问题,本文对健康与病害肉的表面拉曼谱图的特征信息提取和分类方法进行研究,以实现对健康肉与病害肉的快速鉴别.[方法]以羊肉的表面增强拉曼谱图为样本,分别采用主成分分析-支持向量机和卷积神经网络两种方法进行分类.通过提取谱图的精细化特征,实现谱图数据的降维和干扰信息的过滤,为分类模型提供更加准确和丰富的特征信息.并以240份包含健康与病害羊肉的拉曼谱图为训练集样本,建立了分类模型,以另外的120份样本进行健康与病害肉的辨别效果验证.[结果]实验表明经过精细化特征提取后构建的主成分分析-支持向量机模型能清晰的找到健康与病害肉的分类边界,验证样本的识别准确率从82.5%上升到93.3%,同时使用卷积神经网络对精细化提取的特征进行学习与分类,识别准确率从常规方法的90.2%上升到95.5%.[结论]本文提出的基于表面增强拉曼的肉类谱图的精细化特征信息提取和分类方法能够有效实现对羊肉样品中健康肉与病害肉的快速分类和鉴别,该方法同样可以应用于其他肉类的检测分类,对保障食品安全具有重要的意义.
展开更多
关键词
病害肉检测
主成分分析
拉曼谱图
卷积神经网络
下载PDF
职称材料
题名
基于精细化特征信息提取的健康和病害肉快速判别方法
1
作者
薛文东
洪德明
陈本能
洪永强
艾连峰
陈美芳
王鑫
机构
厦门大学航空航天学院
石家庄海关技术中心
河北医科大学公共卫生学院
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2024年第2期170-178,共9页
文摘
[目的]针对健康肉与病害肉的快速鉴别问题,本文对健康与病害肉的表面拉曼谱图的特征信息提取和分类方法进行研究,以实现对健康肉与病害肉的快速鉴别.[方法]以羊肉的表面增强拉曼谱图为样本,分别采用主成分分析-支持向量机和卷积神经网络两种方法进行分类.通过提取谱图的精细化特征,实现谱图数据的降维和干扰信息的过滤,为分类模型提供更加准确和丰富的特征信息.并以240份包含健康与病害羊肉的拉曼谱图为训练集样本,建立了分类模型,以另外的120份样本进行健康与病害肉的辨别效果验证.[结果]实验表明经过精细化特征提取后构建的主成分分析-支持向量机模型能清晰的找到健康与病害肉的分类边界,验证样本的识别准确率从82.5%上升到93.3%,同时使用卷积神经网络对精细化提取的特征进行学习与分类,识别准确率从常规方法的90.2%上升到95.5%.[结论]本文提出的基于表面增强拉曼的肉类谱图的精细化特征信息提取和分类方法能够有效实现对羊肉样品中健康肉与病害肉的快速分类和鉴别,该方法同样可以应用于其他肉类的检测分类,对保障食品安全具有重要的意义.
关键词
病害肉检测
主成分分析
拉曼谱图
卷积神经网络
Keywords
diseased meat detection
principal component analysis
Raman spectrum
convolutional neural network
分类号
O433.4 [机械工程—光学工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于精细化特征信息提取的健康和病害肉快速判别方法
薛文东
洪德明
陈本能
洪永强
艾连峰
陈美芳
王鑫
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部