Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by...Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.展开更多
珠海口岸出入境人员传染病监测结果分析,多糖抗病毒作用的研究概况(综述),抗病毒三号对小鼠免疫功能影响的研究,空肠弯曲菌的磁捕获一荧光 PCR检测技术研究,LC/MS/MS测定水产品中7种氟喹诺酮类抗菌素残留量的方法研究,医院感染...珠海口岸出入境人员传染病监测结果分析,多糖抗病毒作用的研究概况(综述),抗病毒三号对小鼠免疫功能影响的研究,空肠弯曲菌的磁捕获一荧光 PCR检测技术研究,LC/MS/MS测定水产品中7种氟喹诺酮类抗菌素残留量的方法研究,医院感染率与抗菌素使用率下降因素浅析,6—0-取代阿昔洛韦衍生物的合成及其抗病毒活性,10—23 DNA enzyme及其在抗病毒基因治疗中的应用(综述)。展开更多
RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression o...RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.展开更多
ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent...ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of ElB 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-ViroTherapy strategy, is more efficacious than each individual component in vivo.展开更多
Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death i...Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors. Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.展开更多
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor s...Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.展开更多
RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human ...RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells.RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently,small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.展开更多
基金This work was supported by the Natural Science Foundation of Shanghai Municipality(No.03ZR14016).
文摘Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor.
文摘珠海口岸出入境人员传染病监测结果分析,多糖抗病毒作用的研究概况(综述),抗病毒三号对小鼠免疫功能影响的研究,空肠弯曲菌的磁捕获一荧光 PCR检测技术研究,LC/MS/MS测定水产品中7种氟喹诺酮类抗菌素残留量的方法研究,医院感染率与抗菌素使用率下降因素浅析,6—0-取代阿昔洛韦衍生物的合成及其抗病毒活性,10—23 DNA enzyme及其在抗病毒基因治疗中的应用(综述)。
基金RFCID, No 01030152, RGC, CUHK4428/06M, ITF ITS091/03 of Hong Kong Government, and Faculty Direct Fund of the Chinese University of Hong Kong
文摘RNA interference (RNAi) is an evolutionally conserved gene silencing mechanism present in a variety of eukaryotic species. RNAi uses short double-stranded RNA (dsRNA) to trigger degradation or translation repression of homologous RNA targets in a sequence-specific manner. This system can be induced effectively in vitro and in vivo by direct application of small interfering RNAs (siRNAs), or by expression of short hairpin RNA (shRNA) with non-viral and viral vectors. To date, RNAi has been extensively used as a novel and effective tool for functional genomic studies, and has displayed great potential in treating human diseases, including human genetic and acquired disorders such as cancer and viral infections. In the present review, we focus on the recent development in the use of RNAi in the prevention and treatment of viral infections. The mechanisms, strategies, hurdles and prospects of employing RNAi in the pharmaceutical industry are also discussed.
基金supported by the Key Project of the Chinese Academy of Sciences(No.KSCX2-3-06)the National Natural Science Foundation of China(No.30120160823)the Chinese National“863”High Tech Project Foundation grant(No.2002AA216021).
文摘ONYX-015 is an attractive therapeutic adenovirus for cancer because it can selectively replicate in tumor cells and kill them. To date, clinical trials of this adenovirus have demonstrated marked safety but not potent enough when it was used alone. In this paper, we put forward a novel concept of Gene-ViroTherapy strategy and in this way, we constructed an armed therapeutic oncolytic adenovirus system, ZD55-gene, which is not only deleted of ElB 55-kD gene similar to ONYX-015, but also armed with foreign antitumor gene. ZD55-gene exhibited similar cytopathic effects and replication kinetics to that of ONYX-015 in vitro. Importantly, the carried gene is expressed and the expression level can increase with the replication of virus. Consequently, a significant antitumoral efficacy was observed when ZD55-CD/5-FU was used as an example in nude mice with subcutaneous human SW620 colon cancer. Our data demonstrated that ZD55-gene, which utilizing the Gene-ViroTherapy strategy, is more efficacious than each individual component in vivo.
文摘Gastric cancer is one of the most common malignancies worldwide. With current therapeutic approaches the prognosis of gastric cancer is very poor, as gastric cancer accounts for the second most common cause of death in cancer related deaths. Gastric cancer like almost all other cancers has a molecular genetic basis which relies on disruption in normal cellular regulatory mechanisms regarding cell growth, apoptosis and cell division. Thus novel therapeutic approaches such as gene therapy promise to become the alternative choice of treatment in gastric cancer. In gene therapy, suicide genes, tumor suppressor genes and anti-angiogenesis genes among many others are introduced to cancer cells via vectors. Some of the vectors widely used in gene therapy are Adenoviral vectors. This review provides an update of the new developments in adenoviral cancer gene therapy including strategies for inducing apoptosis, inhibiting metastasis and targeting the cancer cells.
文摘Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.
文摘RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells.RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently,small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.