This paper reviewed the research advances of Ug99 and its resistance breeding from the aspects of its discovery, race variation, pathogenicity, distribution, spread, exploration of relative resistant genes, linked mol...This paper reviewed the research advances of Ug99 and its resistance breeding from the aspects of its discovery, race variation, pathogenicity, distribution, spread, exploration of relative resistant genes, linked molecular marker selection and resistance breeding strategies, to provide basis for comprehensive understanding of the new Puccinia graminis f. sp. tritici race Ug99 and its potential threat to wheat production. Ug99 is a new Puccinia grarninis f. sp. tritici race with high variability, strong pathogenicity and rapid spread speed, which is likely to cause global damages to world wheat production. We should strengthen the exploration and utilization of new resistance genes in wheat and relative species and breeding of new wheat varieties with durable resistance, to control and prevent damages caused by Ug99 and its variants.展开更多
Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted ...Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted 70% on wheat variety Mexipak in Syria, and recurrent infection in 2010, caused by a virulent race called Yr27, caused a considerable loss in the production of bread wheat cultivars (Cham 8, Cham 6 particularly) amounted 90%. Recently, 15 races of yellow rust had been addressed in Syria for seasons 2010-2014; 159E256, 166E254, 166E256, 255 E112, 0 E0, 64 E 6, 230 El50, 0 E 18, 198 El30, 166 El50, 102 El60, 128 E0, 126 El50, 214E150, and 6E16. The race 6E16 was the most frequent during the two seasons, while the race 255El12 was the most virulent, followed by the race 230E222 and the race 0E0 was the weakest one. This study revealed the presence of fourteen newly observed races in Syria. Molecular Variance Analysis of Molecular Variance (AMOVA) of 55 yellow rust Puccinia striiformis f.sp tritici isolates examined by Amplify Fragment Length Polymorphism (AFLP) revealed high genetic variation within population, and the dimensional scale analysis (MSD) and tree diagram showed that the Syrian yellow rust isolates were clustered in three groups: the first group contained isolates derived from durum wheat, the second one contained bread wheat isolates, but the third was made of isolates derived from both durum and bread wheat species.展开更多
Rice blast caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases, which causes significant rice yield losses and affects global food security. To better understand genetic variations among...Rice blast caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases, which causes significant rice yield losses and affects global food security. To better understand genetic variations among different isolates of M. oryzae in nature, we re-sequenced the genomes of two field isolates, CH43 and Zhong-10-8-14, which showed distinct pathogenecity on most of the rice cultivars. Genome-wide genetic variation analysis reveals that ZHONG-10-8-14 exhibits higher sequence variations than CH43. Structural variations (SVs) detection shows that the sequence variations primarily occur in exons and intergenic regions. Bioinformatics analysis for gene variations reveals that many pathogenecity-related pathways are enriched. In addition, 193 candidate effectors with various DNA polymorphisms were identified, including two known effectors AVR-Pik and AVR-Pital. Comparative polymorphism analysis of thirteen randomly selected effectors suggests that the genetic variations of effectors are under positive selection. The expression pattern analysis of several pathogenecity-related variant genes indicates that these genes are differentially regulated in two isolates, with much higher expression levels in Zhong-10-8-14 than CH43. Our data demonstrate that the genetic variations of effectors and pathogenecity-related genes are under positive selection, resulting in the distinct pathogeuicities of CH43 and Zhong- 10-8-14 on rice.展开更多
基金Supported by Starting Fund for Introduction of Qualified Personnel from Henan Agricultural University (30300190)~~
文摘This paper reviewed the research advances of Ug99 and its resistance breeding from the aspects of its discovery, race variation, pathogenicity, distribution, spread, exploration of relative resistant genes, linked molecular marker selection and resistance breeding strategies, to provide basis for comprehensive understanding of the new Puccinia graminis f. sp. tritici race Ug99 and its potential threat to wheat production. Ug99 is a new Puccinia grarninis f. sp. tritici race with high variability, strong pathogenicity and rapid spread speed, which is likely to cause global damages to world wheat production. We should strengthen the exploration and utilization of new resistance genes in wheat and relative species and breeding of new wheat varieties with durable resistance, to control and prevent damages caused by Ug99 and its variants.
文摘Yellow Rust (stripe) rust (Puccinia striiformis West. f. sp. tritici) is one of the most epidemic diseases infect wheat in cold and wet regions. In 1988, this disease caused a loss of seasonal production amounted 70% on wheat variety Mexipak in Syria, and recurrent infection in 2010, caused by a virulent race called Yr27, caused a considerable loss in the production of bread wheat cultivars (Cham 8, Cham 6 particularly) amounted 90%. Recently, 15 races of yellow rust had been addressed in Syria for seasons 2010-2014; 159E256, 166E254, 166E256, 255 E112, 0 E0, 64 E 6, 230 El50, 0 E 18, 198 El30, 166 El50, 102 El60, 128 E0, 126 El50, 214E150, and 6E16. The race 6E16 was the most frequent during the two seasons, while the race 255El12 was the most virulent, followed by the race 230E222 and the race 0E0 was the weakest one. This study revealed the presence of fourteen newly observed races in Syria. Molecular Variance Analysis of Molecular Variance (AMOVA) of 55 yellow rust Puccinia striiformis f.sp tritici isolates examined by Amplify Fragment Length Polymorphism (AFLP) revealed high genetic variation within population, and the dimensional scale analysis (MSD) and tree diagram showed that the Syrian yellow rust isolates were clustered in three groups: the first group contained isolates derived from durum wheat, the second one contained bread wheat isolates, but the third was made of isolates derived from both durum and bread wheat species.
基金supported by the Chinese Academy of Sciences(Strategic Priority Research Program XDB11020300)National Natural Science Foundation of China(31570252,31601629)+1 种基金the start-up fund of"One Hundred Talents"program of the Chinese Academy of Sciences and by the grants from the State Key Laboratory of Plant Genomics(O8KF021011)the Key Laboratory of Urban Agriculture(North)of Ministry of Agriculture of China Beijing University of Agriculture(KFK2015001)
文摘Rice blast caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases, which causes significant rice yield losses and affects global food security. To better understand genetic variations among different isolates of M. oryzae in nature, we re-sequenced the genomes of two field isolates, CH43 and Zhong-10-8-14, which showed distinct pathogenecity on most of the rice cultivars. Genome-wide genetic variation analysis reveals that ZHONG-10-8-14 exhibits higher sequence variations than CH43. Structural variations (SVs) detection shows that the sequence variations primarily occur in exons and intergenic regions. Bioinformatics analysis for gene variations reveals that many pathogenecity-related pathways are enriched. In addition, 193 candidate effectors with various DNA polymorphisms were identified, including two known effectors AVR-Pik and AVR-Pital. Comparative polymorphism analysis of thirteen randomly selected effectors suggests that the genetic variations of effectors are under positive selection. The expression pattern analysis of several pathogenecity-related variant genes indicates that these genes are differentially regulated in two isolates, with much higher expression levels in Zhong-10-8-14 than CH43. Our data demonstrate that the genetic variations of effectors and pathogenecity-related genes are under positive selection, resulting in the distinct pathogeuicities of CH43 and Zhong- 10-8-14 on rice.