A 67-year-old man with celiac disease developed recurrent diarrhea,profound weakness and weight loss, with evidence of marked protein depletion.His clinical course was refractory to a strict gluten-free diet and stero...A 67-year-old man with celiac disease developed recurrent diarrhea,profound weakness and weight loss, with evidence of marked protein depletion.His clinical course was refractory to a strict gluten-free diet and steroid therapy.Postmortem studies led to definition of unrecognized collagenous sprue that caused ulceration and small intestinal perforation.Although PCR showed identical monoclonal T-cell populations in antemortem duodenal biopsies and postmortem jejunum,careful pathological evaluation demonstrated no frank lymphoma.Rarely,overt or even cryptic T-cell lymphoma may complicate collagenous sprue,however, small intestinal ulcers and perforation may also develop independently.The dramatic findings here may reflect an underlying or early molecular event in the eventual clinical appearance of overt T-cell lymphoma.展开更多
In recent years,the emerging two-dimensional(2 D)nanomaterials have shown great potential for a variety of applications such as electronics,catalysis,supercapacitors,and energy materials.In the biomedical arena,these ...In recent years,the emerging two-dimensional(2 D)nanomaterials have shown great potential for a variety of applications such as electronics,catalysis,supercapacitors,and energy materials.In the biomedical arena,these nanomaterials,especially 2 D-ultrathin nanomaterials,have also been regarded as promising nano-carriers and/or diagnostic agents for cancer diagnosis and treatment,owing to their remarkable mechanical,photothermal,and optical properties.In this review,we provide the recent development of the nanoplatforms based on near-infrared/ultrasound-sensitive 2 D-materials,representatively such as graphdiyne(GDY),black phosphorus,transition metal dichalcogenides(TMDs),and antimonene,for non-invasive cancer therapeutics including photothermal,photodynamic and sonodynamic approaches.The general properties of these 2 D nanomaterials linking to biomedical interests are first introduced,followed by the fabrication processes of diverse nano-platforms and related outcomes of cancer diagnosis and treatments.We also outline the current challenges and prospects of the 2 D materials for non-invasive approaches to cancer treatments in the future.展开更多
Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and e...Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.展开更多
Relapse and metastasis of tumor may occur for osteosarcoma(OS)patients after clinical resection.Conventional metallic scaffolds provide sufficient mechanical support to the defected bone but fail to eradicate recurrin...Relapse and metastasis of tumor may occur for osteosarcoma(OS)patients after clinical resection.Conventional metallic scaffolds provide sufficient mechanical support to the defected bone but fail to eradicate recurring tumors.Here we report that biodegradable magnesium(Mg)wirebased implant can inhibit OS growth.In brief,the Mg wires release Mg ions to activate the transport of zinc finger protein Snail1 from cytoplasm to cell nucleus,which induces apoptosis and inhibits proliferation of OS cells through a parallel antitumor signaling pathway of miRNA-181d-5p/TIMP3 and miRNA-181c-5p/NLK downstream.Simultaneously,the hydrogen gas evolution from Mg wires eliminates intracellular excessive reactive oxygen species,by which the growth of bone tumor cells is suppressed.The subcutaneous tumor-bearing experiment of OS cells in nude mice further confirms that Mg wires can effectively inhibit the growth of tumors and prolong the survival of tumor-bearing mice.In addition,Mg wires have no toxicity to normal cells and tissues.These results suggest that Mg implant is a potential anti-tumor scaffold for OS patients.展开更多
Cationic lipids have been applied to siRNA delivery for tumor therapeutics. However, the excess positive charges of these nanoplexes may lead to high cytotoxicity and nonnegligible immunogenicity both in vitro and in ...Cationic lipids have been applied to siRNA delivery for tumor therapeutics. However, the excess positive charges of these nanoplexes may lead to high cytotoxicity and nonnegligible immunogenicity both in vitro and in vivo, which limited the applications of gene drugs. We constructed multi-component lipoplex to delivery 3',3"-bis-peptide-siRNA conjugate (pp-siRNA) by the treatment of melanoma. Based on the previous studies that the gemini lipid (CLD) encapsulated pp-siRNA, a novel neutral cytosin-l-yl- lipid (DNCA) was considered to replace a certain ration of CLD by hydrogen bonds and ~t-n stacking for reducing the cytotoxicity. It similarly retained in both the loading efficiency and targeted mRNA inhibition when DNCA was accounted for 40% in the lipoplex, with lower toxicity. Moreover, CLD/DNCA/pp-siRNA nanoplex could be uptake in A375 cells and internalized mainly by macropinocytosis and caveolin-mediated endocytosis. Besides, 90% CLD/DNCA/pp-siRNA nanoplexes presented the highest efficient knockdown for the mutant B-RAF mRNA (-80%). All the results demonstrated that the mixed cationic and neutral lipids could efficiently realize the delivery of pp-siRNA and had potential application for cancer therapy.展开更多
Ultrasmall FeCo-graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demon...Ultrasmall FeCo-graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demonstrate the use of FeCo/GC for highly effective cancer therapy through combined drug delivery, tumor-selective near-infrared photothermal therapy, and cancer imaging of a 4T1 syngeneic breast cancer model. The graphitic carbon shell of the ~4 nm FeCo/GC readily loads doxorubicin (DOX) via π-π stacking and absorbs near-infrared light giving photothermal heating. When used for cancer treatment, intravenously administrated FeCo/GC-DOX led to complete tumor regression in 45% of mice when combined with 20 min of near-infrared laser irradiation selectively heating the tumor to 43-45 ℃. In addition, the use of FeCo/GC-DOX results in reduced systemic toxicity compared with free DOX and appears to be safe in mice monitored for over 1 yr. FeCo/GC-DOX is shown to be a highly integrated nanoparticle system for synergistic cancer therapy leading to tumor regression of a highly aggressive tumor model.展开更多
Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding th...Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanornaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.展开更多
文摘A 67-year-old man with celiac disease developed recurrent diarrhea,profound weakness and weight loss, with evidence of marked protein depletion.His clinical course was refractory to a strict gluten-free diet and steroid therapy.Postmortem studies led to definition of unrecognized collagenous sprue that caused ulceration and small intestinal perforation.Although PCR showed identical monoclonal T-cell populations in antemortem duodenal biopsies and postmortem jejunum,careful pathological evaluation demonstrated no frank lymphoma.Rarely,overt or even cryptic T-cell lymphoma may complicate collagenous sprue,however, small intestinal ulcers and perforation may also develop independently.The dramatic findings here may reflect an underlying or early molecular event in the eventual clinical appearance of overt T-cell lymphoma.
基金supported by the State Key Research Development Program of China(2019YFB2203503)the National Natural Science Foundation of China(61875138,61435010,81972423 and 61961136001)+4 种基金Science and Technology Innovation Commission of Shenzhen(KQTD2015032416270385,JCYJ20170811093453105,JCYJ20180307164612205,JCYJ20170307144246792,GJHZ20180928160209731 and 202050345)the Clinical Research Startup Plan of Southern Medical University(LC2016YM018)Shenzhen Key Laboratory of Viral Oncology(ZDSYS201707311140430)the Grant of Sanming Medical Project(SM201702)the Instrumental Analysis Center of Shenzhen University(Xili Campus)。
文摘In recent years,the emerging two-dimensional(2 D)nanomaterials have shown great potential for a variety of applications such as electronics,catalysis,supercapacitors,and energy materials.In the biomedical arena,these nanomaterials,especially 2 D-ultrathin nanomaterials,have also been regarded as promising nano-carriers and/or diagnostic agents for cancer diagnosis and treatment,owing to their remarkable mechanical,photothermal,and optical properties.In this review,we provide the recent development of the nanoplatforms based on near-infrared/ultrasound-sensitive 2 D-materials,representatively such as graphdiyne(GDY),black phosphorus,transition metal dichalcogenides(TMDs),and antimonene,for non-invasive cancer therapeutics including photothermal,photodynamic and sonodynamic approaches.The general properties of these 2 D nanomaterials linking to biomedical interests are first introduced,followed by the fabrication processes of diverse nano-platforms and related outcomes of cancer diagnosis and treatments.We also outline the current challenges and prospects of the 2 D materials for non-invasive approaches to cancer treatments in the future.
基金supported by the National Natural Science Foundation of China (21035005)the Doctoral Program Foundation of Institutions of Higher Education of China (20115301120002)the Natural Science Foundation of Yunnan Province of China (2011FB007)
文摘Graphene possesses unique physical and chemical properties, which have inspired a wide range of potential biomedical applications. However, little is known about the adverse effects of graphene on the human body and ecological environment. The purpose of our work is to make assessment on the toxicity of graphene oxide (GO) against human cell line (human bone marrow neuroblastoma cell line and human epithelial carcinoma cell line) and zebrafish (Danio rerio) by comparing the toxic effects of GO with its sister, multi-walled carbon nanotubes (MWNTs). The results show that GO has a moderate toxicity to organisms since it can induce minor (about 20%) cell growth inhibition and slight hatching delay of zebrafish embryos at a dosage of 50 mg/L, but did not result in significant increase of apoptosis in embryo, while MWNTs exhibit acute toxicity leading to a strong inhibition of cell proliferation and serious morphological defects in developing embryos even at relatively low concentration of 25 mg/L. The distinctive toxicity of GO and MWNTs should be ascribed to the different models of interaction between nanomaterials and organisms, which arises from the different geometric structures of nanomaterials. Collectively, our work suggests that GO does actual toxicity to organisms posing potential environmental risks and the result is also shedding light on the geometrical structure-dependent toxicity of graphitic nanomaterials.
基金the National Key Research and Development Program of China(2018YFC1106600)the Interdisciplinary Program of Shanghai Jiao Tong University(ZH2018QNB07)。
文摘Relapse and metastasis of tumor may occur for osteosarcoma(OS)patients after clinical resection.Conventional metallic scaffolds provide sufficient mechanical support to the defected bone but fail to eradicate recurring tumors.Here we report that biodegradable magnesium(Mg)wirebased implant can inhibit OS growth.In brief,the Mg wires release Mg ions to activate the transport of zinc finger protein Snail1 from cytoplasm to cell nucleus,which induces apoptosis and inhibits proliferation of OS cells through a parallel antitumor signaling pathway of miRNA-181d-5p/TIMP3 and miRNA-181c-5p/NLK downstream.Simultaneously,the hydrogen gas evolution from Mg wires eliminates intracellular excessive reactive oxygen species,by which the growth of bone tumor cells is suppressed.The subcutaneous tumor-bearing experiment of OS cells in nude mice further confirms that Mg wires can effectively inhibit the growth of tumors and prolong the survival of tumor-bearing mice.In addition,Mg wires have no toxicity to normal cells and tissues.These results suggest that Mg implant is a potential anti-tumor scaffold for OS patients.
基金The National Natural Science Foundation of China(Grant No.21778006 and 20932001)the Ministry of Science and Technology of China(Grant No.2012AA022501)
文摘Cationic lipids have been applied to siRNA delivery for tumor therapeutics. However, the excess positive charges of these nanoplexes may lead to high cytotoxicity and nonnegligible immunogenicity both in vitro and in vivo, which limited the applications of gene drugs. We constructed multi-component lipoplex to delivery 3',3"-bis-peptide-siRNA conjugate (pp-siRNA) by the treatment of melanoma. Based on the previous studies that the gemini lipid (CLD) encapsulated pp-siRNA, a novel neutral cytosin-l-yl- lipid (DNCA) was considered to replace a certain ration of CLD by hydrogen bonds and ~t-n stacking for reducing the cytotoxicity. It similarly retained in both the loading efficiency and targeted mRNA inhibition when DNCA was accounted for 40% in the lipoplex, with lower toxicity. Moreover, CLD/DNCA/pp-siRNA nanoplex could be uptake in A375 cells and internalized mainly by macropinocytosis and caveolin-mediated endocytosis. Besides, 90% CLD/DNCA/pp-siRNA nanoplexes presented the highest efficient knockdown for the mutant B-RAF mRNA (-80%). All the results demonstrated that the mixed cationic and neutral lipids could efficiently realize the delivery of pp-siRNA and had potential application for cancer therapy.
文摘Ultrasmall FeCo-graphitic carbon shell nanocrystals (FeCo/GC) are promising multifunctional materials capable of highly efficient drug delivery in vitro and magnetic resonance imaging in vivo. In this work, we demonstrate the use of FeCo/GC for highly effective cancer therapy through combined drug delivery, tumor-selective near-infrared photothermal therapy, and cancer imaging of a 4T1 syngeneic breast cancer model. The graphitic carbon shell of the ~4 nm FeCo/GC readily loads doxorubicin (DOX) via π-π stacking and absorbs near-infrared light giving photothermal heating. When used for cancer treatment, intravenously administrated FeCo/GC-DOX led to complete tumor regression in 45% of mice when combined with 20 min of near-infrared laser irradiation selectively heating the tumor to 43-45 ℃. In addition, the use of FeCo/GC-DOX results in reduced systemic toxicity compared with free DOX and appears to be safe in mice monitored for over 1 yr. FeCo/GC-DOX is shown to be a highly integrated nanoparticle system for synergistic cancer therapy leading to tumor regression of a highly aggressive tumor model.
基金supported by the Ministry of Science and Technology of China (2016YFA0201600)the National Natural Science Foundation of China (21477029)+2 种基金the Chinese Academy of Sciences (XDA09040400)Beijing Key Laboratory of Environmental Toxicology (2015HJDL01)the State Key Laboratory of Integrated Management of Pest Insects and Rodents (ChineseIPM1613)
文摘Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties. We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanornaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography (OCT), X-ray computed tomography (CT) imaging, two-photon luminescence (TPL), photoacoustic tomography (PAT), magnetic resonance imaging (MRI), surface-enhanced Raman scattering (SERS) and positron emission tomography (PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.