[Objective] The paper was to study the dynamic changes of forage nutrient substance fermentation in rumen, and a set of continuous culture system of artificial rumen was designed. [Method] With in vivo as control, the...[Objective] The paper was to study the dynamic changes of forage nutrient substance fermentation in rumen, and a set of continuous culture system of artificial rumen was designed. [Method] With in vivo as control, the simulating rumen fer- mentation effect in vitro culture system was evaluated. [Result] The simulation rumen fermentation test needed adaptive phase of 2-3 d, and the fermentation state was relatively stable within 3-9 d, with good effects. The test showed certain regularity variation with index value of rumen in vivo. [Conclusion] The continuous culture sys- tem of artificial rumen could be used as the ideal model to study the rumen fermen- tation in vivo.展开更多
AIM: To explore the expression of cadherin isoforms in cultured human gastric carcinoma cells and its regulation. METHODS: The expressions of cell adhesion molecules (including E-cadherin, N-cadherin, α-catenin, ...AIM: To explore the expression of cadherin isoforms in cultured human gastric carcinoma cells and its regulation. METHODS: The expressions of cell adhesion molecules (including E-cadherin, N-cadherin, α-catenin, β-catenin) and cadherin transcription factors including snail, slug and twist were determined by reverse transcriptasepolymerase chain reaction(RT-PCR), immunoblotting and immunofluorescence in SV40-immortalized human gastric cell line Ges-1 and human gastric cancer cell lines MGC-803, BGC-823 and SGC-7901. RESULTS: All cell lines expressed N-cadherin, but not E-cadherin. N-cadherin immunofluorescence was detected at cell membranous adherents junctions where co-localization with immunofluorescent staining of inner surface adhesion proteins α- and β-catenins was observed. The transformed Ges-1 and gastric cancer cell lines all expressed transcription factors (snail, slug and twist) which inhibited the expression of E-cadherin and triggered epithelial-mesenchymal transformation. CONCLUSION: Cadherin isoforms can change from E-cadherin to N-cadherin in transformed human gastric cancer cells, which is associated with intracellular events of stomach carcinogenesis and high expression of corresponding transcription factors.展开更多
文摘[Objective] The paper was to study the dynamic changes of forage nutrient substance fermentation in rumen, and a set of continuous culture system of artificial rumen was designed. [Method] With in vivo as control, the simulating rumen fer- mentation effect in vitro culture system was evaluated. [Result] The simulation rumen fermentation test needed adaptive phase of 2-3 d, and the fermentation state was relatively stable within 3-9 d, with good effects. The test showed certain regularity variation with index value of rumen in vivo. [Conclusion] The continuous culture sys- tem of artificial rumen could be used as the ideal model to study the rumen fermen- tation in vivo.
基金Supported by the National Natural Science Foundation of China,No.30370555 Supported by the National Natural Science Foundation of China,No.30270658+1 种基金National Major Basic Research Development Program No.G2000057002"211"project.
文摘AIM: To explore the expression of cadherin isoforms in cultured human gastric carcinoma cells and its regulation. METHODS: The expressions of cell adhesion molecules (including E-cadherin, N-cadherin, α-catenin, β-catenin) and cadherin transcription factors including snail, slug and twist were determined by reverse transcriptasepolymerase chain reaction(RT-PCR), immunoblotting and immunofluorescence in SV40-immortalized human gastric cell line Ges-1 and human gastric cancer cell lines MGC-803, BGC-823 and SGC-7901. RESULTS: All cell lines expressed N-cadherin, but not E-cadherin. N-cadherin immunofluorescence was detected at cell membranous adherents junctions where co-localization with immunofluorescent staining of inner surface adhesion proteins α- and β-catenins was observed. The transformed Ges-1 and gastric cancer cell lines all expressed transcription factors (snail, slug and twist) which inhibited the expression of E-cadherin and triggered epithelial-mesenchymal transformation. CONCLUSION: Cadherin isoforms can change from E-cadherin to N-cadherin in transformed human gastric cancer cells, which is associated with intracellular events of stomach carcinogenesis and high expression of corresponding transcription factors.