期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
SVM在基因微阵列癌症数据分类中的应用 被引量:2
1
作者 孟范静 刘毅慧 +1 位作者 王洪国 成金勇 《计算机工程与应用》 CSCD 北大核心 2007年第34期246-248,共3页
在总结二分类支持向量机应用的基础上,提出了利用t-验证方法和Wilcoxon验证方法进行特征选取,以支持向量机(SVM)为分类器,针对基因微阵列癌症数据进行分析的新方法,通过对白血病数据集和结肠癌数据集的分类实验,证明提出的方法不但识别... 在总结二分类支持向量机应用的基础上,提出了利用t-验证方法和Wilcoxon验证方法进行特征选取,以支持向量机(SVM)为分类器,针对基因微阵列癌症数据进行分析的新方法,通过对白血病数据集和结肠癌数据集的分类实验,证明提出的方法不但识别率高,而且需要选取的特征子集小,分类速度快,提高了分类的准确性与分类速度。 展开更多
关键词 微阵列数据 支持向量机 癌症数据分类 特征选取
下载PDF
Cancer classification based on microarray gene expression data using a principal component accumulation method 被引量:2
2
作者 LIU JingJing CAI WenSheng SHAO XueGuang 《Science China Chemistry》 SCIE EI CAS 2011年第5期802-811,共10页
The classification of cancer is a major research topic in bioinformatics. The nature of high dimensionality and small size associated with gene expression data,however,makes the classification quite challenging. Altho... The classification of cancer is a major research topic in bioinformatics. The nature of high dimensionality and small size associated with gene expression data,however,makes the classification quite challenging. Although principal component analysis (PCA) is of particular interest for the high-dimensional data,it may overemphasize some aspects and ignore some other important information contained in the richly complex data,because it displays only the difference in the first twoor three-dimensional PC subspaces. Based on PCA,a principal component accumulation (PCAcc) method was proposed. It employs the information contained in multiple PC subspaces and improves the class separability of cancers. The effectiveness of the present method was evaluated by four commonly used gene expression datasets,and the results show that the method performs well for cancer classification. 展开更多
关键词 cancer classification principal component analysis principal component accumulation gene expression data
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部