Objective Measuring the serum concentrations of adrenocorticotropic hormone (ACTH) and cortisol in epileptic seizures during sleep to investigate their link to the EEG changes. Methods Pre-surgical evaluation was pe...Objective Measuring the serum concentrations of adrenocorticotropic hormone (ACTH) and cortisol in epileptic seizures during sleep to investigate their link to the EEG changes. Methods Pre-surgical evaluation was performed by videoEEG monitoring using 24 channel recording. Thirty six epilepsy patients could be attributed to two groups: 28 patients had spontaneous seizures, and the other 8 patients whose seizures were induced by bemegride. Another 11 persons with confirmed psychogenic non-epileptic seizures (PNES) served as control group. Blood samples were obtained at five points: wake (08:00 a.m.), sleep (00:00 a.m.), and shortly before, during and after an epileptic seizure. The serum ACTH and cortisol were measured and analyzed by chemiluminescent immunoassay. Results The levels of ACTH and cortisol in serum underwent significant changes: declining below the average sleep-level shortly before seizures, increasing during seizures, and far above the average wake-level after seizures (P 〈 0.001). Such changes did not occur in the control group (P 〉 0.05). The ACTH and cortisol levels had no significant difference between spontaneous group and bemegride-induced group (P 〉 0.05). Conclusion The serum concentrations of ACTH and cortisol during sleep seizures are linked with pre-ictal and ictal EEG changes in epilepsy patients.展开更多
Sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Additionally, potential pathomechanisms for SUDEP is unknown, but it is very probable that cardiac arrhythmia...Sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Additionally, potential pathomechanisms for SUDEP is unknown, but it is very probable that cardiac arrhythmia during and between seizures, electrolyte disturbances, arrhythmogenic drugs or transmission of epileptic activity via the autonomic nervous system to the heart may play a potential role. Quite interestingly, clinical and experimental data have shown that physical activity can decrease seizure frequency, as well as lead to improved cardiovascular health in patients with epilepsy. Based on these facts, the purpose of this article is to review the body of literature of the possible contribution of physical exercise to the SUDEP prevention in a comprehensive manner.展开更多
Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to ...Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to monitor and modulate the related brain neurological activities.In this work,stretchable micro electrocorticogram(mECoG)electrodes are developed and used to investigate penicillininduced epilepsy in rats.The electrodes possess excellent stretchability,conformality,anti-interference ability and sufficient resolution to successfully monitor electroencephalogram(EEG)signals,which is superior to traditional rigid polyimide-based electrodes.Characteristic epileptic spike waves are detected and analyzed to study the epileptic focus and electrical stimulus effects during epileptic seizures.It is found that the spike waves occur first in the visual cortex which is likely to be the epileptic focus.Epileptic spike wave frequency quickly increases to 1.07 Hz where it reaches a plateau and remains stable.There is no dominant brain hemisphere that would show early warning of epileptic seizures.Electrical stimuli for various times are applied after administering penicillin.It is found that 15 min of electrical stimulus has the best restraining effect on epileptic seizures.The mECoG electrodes developed in this study show potentials for applications in stretchable biomedical devices.展开更多
Partial epilepsy is characterized by recurrent seizures that arise from a localized pathological brain region. During the onset of partial epilepsy, the seizure evolution commonly exhibits typical timescale separation...Partial epilepsy is characterized by recurrent seizures that arise from a localized pathological brain region. During the onset of partial epilepsy, the seizure evolution commonly exhibits typical timescale separation phenomenon. This timescale separation behavior can be mimicked by a paradigmatic model termed as Epileptor, which consists of coupled fast-slow neural populations via a permittivity variable. By incorporating permittivity noise into the Epileptor model, we show here that stochastic fluctuations of permittivity coupling participate in the modulation of seizure dynamics in partial epilepsy. In particular, introducing a certain level of permittivity noise can make the model produce more comparable seizure-like events that capture the temporal variability in realistic partial seizures. Furthermore, we observe that with the help of permittivity noise our stochastic Epileptor model can trigger the seizure dynamics even when it operates in the theoretical nonepileptogenic regime. These findings establish a deep mechanistic understanding on how stochastic fluctuations of permittivity coupling shape the seizure dynamics in partial epilepsy,and provide insightful biological implications.展开更多
文摘Objective Measuring the serum concentrations of adrenocorticotropic hormone (ACTH) and cortisol in epileptic seizures during sleep to investigate their link to the EEG changes. Methods Pre-surgical evaluation was performed by videoEEG monitoring using 24 channel recording. Thirty six epilepsy patients could be attributed to two groups: 28 patients had spontaneous seizures, and the other 8 patients whose seizures were induced by bemegride. Another 11 persons with confirmed psychogenic non-epileptic seizures (PNES) served as control group. Blood samples were obtained at five points: wake (08:00 a.m.), sleep (00:00 a.m.), and shortly before, during and after an epileptic seizure. The serum ACTH and cortisol were measured and analyzed by chemiluminescent immunoassay. Results The levels of ACTH and cortisol in serum underwent significant changes: declining below the average sleep-level shortly before seizures, increasing during seizures, and far above the average wake-level after seizures (P 〈 0.001). Such changes did not occur in the control group (P 〉 0.05). The ACTH and cortisol levels had no significant difference between spontaneous group and bemegride-induced group (P 〉 0.05). Conclusion The serum concentrations of ACTH and cortisol during sleep seizures are linked with pre-ictal and ictal EEG changes in epilepsy patients.
文摘Sudden unexpected death in epilepsy (SUDEP) is the most important direct epilepsy-related cause of death. Additionally, potential pathomechanisms for SUDEP is unknown, but it is very probable that cardiac arrhythmia during and between seizures, electrolyte disturbances, arrhythmogenic drugs or transmission of epileptic activity via the autonomic nervous system to the heart may play a potential role. Quite interestingly, clinical and experimental data have shown that physical activity can decrease seizure frequency, as well as lead to improved cardiovascular health in patients with epilepsy. Based on these facts, the purpose of this article is to review the body of literature of the possible contribution of physical exercise to the SUDEP prevention in a comprehensive manner.
基金financially supported by the National Key Scientific Research Instrument Development Project(81927804)the Major Scientific and Technological Innovation Projects of Shandong Province(2019JZZY011112)+1 种基金the Clinical Research Project of Shandong University(2020SDUCRCB004)the National Nature Science Foundation of China(81960419 and 81760416)。
文摘Epilepsy is a chronic nervous disease with increasing incidence worldwide,while the accurate localization of epileptic focus and the corresponding treatment are still challenging due to the lack of effective tools to monitor and modulate the related brain neurological activities.In this work,stretchable micro electrocorticogram(mECoG)electrodes are developed and used to investigate penicillininduced epilepsy in rats.The electrodes possess excellent stretchability,conformality,anti-interference ability and sufficient resolution to successfully monitor electroencephalogram(EEG)signals,which is superior to traditional rigid polyimide-based electrodes.Characteristic epileptic spike waves are detected and analyzed to study the epileptic focus and electrical stimulus effects during epileptic seizures.It is found that the spike waves occur first in the visual cortex which is likely to be the epileptic focus.Epileptic spike wave frequency quickly increases to 1.07 Hz where it reaches a plateau and remains stable.There is no dominant brain hemisphere that would show early warning of epileptic seizures.Electrical stimuli for various times are applied after administering penicillin.It is found that 15 min of electrical stimulus has the best restraining effect on epileptic seizures.The mECoG electrodes developed in this study show potentials for applications in stretchable biomedical devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.81571770,61527815,81371636 and 81330032)
文摘Partial epilepsy is characterized by recurrent seizures that arise from a localized pathological brain region. During the onset of partial epilepsy, the seizure evolution commonly exhibits typical timescale separation phenomenon. This timescale separation behavior can be mimicked by a paradigmatic model termed as Epileptor, which consists of coupled fast-slow neural populations via a permittivity variable. By incorporating permittivity noise into the Epileptor model, we show here that stochastic fluctuations of permittivity coupling participate in the modulation of seizure dynamics in partial epilepsy. In particular, introducing a certain level of permittivity noise can make the model produce more comparable seizure-like events that capture the temporal variability in realistic partial seizures. Furthermore, we observe that with the help of permittivity noise our stochastic Epileptor model can trigger the seizure dynamics even when it operates in the theoretical nonepileptogenic regime. These findings establish a deep mechanistic understanding on how stochastic fluctuations of permittivity coupling shape the seizure dynamics in partial epilepsy,and provide insightful biological implications.