期刊文献+
共找到83,475篇文章
< 1 2 250 >
每页显示 20 50 100
Olfactory receptors in neural regeneration in the central nervous system
1
作者 Rafael Franco Claudia Garrigós +3 位作者 Toni Capó Joan Serrano-Marín Rafael Rivas-Santisteban Jaume Lillo 《Neural Regeneration Research》 SCIE CAS 2025年第9期2480-2494,共15页
Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor... Olfactory receptors are crucial for detecting odors and play a vital role in our sense of smell,influencing behaviors from food choices to emotional memories.These receptors also contribute to our perception of flavor and have potential applications in medical diagnostics and environmental monitoring.The ability of the olfactory system to regenerate its sensory neurons provides a unique model to study neural regeneration,a phenomenon largely absent in the central nervous system.Insights gained from how olfactory neurons continuously replace themselves and reestablish functional connections can provide strategies to promote similar regenerative processes in the central nervous system,where damage often results in permanent deficits.Understanding the molecular and cellular mechanisms underpinning olfactory neuron regeneration could pave the way for developing therapeutic approaches to treat spinal co rd injuries and neurodegenerative diseases like Alzheimer's disease.Olfa ctory receptors are found in almost any cell of eve ry orga n/tissue of the mammalian body.This ectopic expression provides insights into the chemical structures that can activate olfactory receptors.In addition to odors,olfactory receptors in ectopic expression may respond to endogenous compounds and molecules produced by mucosal colonizing microbiota.The analysis of the function of olfactory receptors in ectopic expression provides valuable information on the signaling pathway engaged upon receptor activation and the receptor's role in proliferation and cell differentiation mechanisms.This review explo res the ectopic expression of olfa ctory receptors and the role they may play in neural regeneration within the central nervous system,with particular attention to compounds that can activate these receptors to initiate regenerative processes.Evidence suggests that olfactory receptors could serve as potential therapeutic targets for enhancing neural repair and recovery following central nervous system injuries. 展开更多
关键词 adenosine receptors adrenergic receptors ectopic expression G proteincoupled receptors GLIA NEURONS
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
2
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients:A matter of disease activity? 被引量:1
3
作者 Antonietta Gerarda Gravina Iacopo Panarese +7 位作者 Maria Consiglia Trotta Michele D'Amico Raffaele Pellegrino Franca Ferraraccio Marilena Galdiero Roberto Alfano Paolo Grieco Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1132-1142,共11页
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce... BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology. 展开更多
关键词 Melanocortin 3 receptor Melanocortin 5 receptor Ulcerative colitis Crohn's disease Inflammatory bowel disease
下载PDF
Role of bitter contributors and bitter taste receptors:a comprehensive review of their sources,functions and future development 被引量:1
4
作者 Xinyue Zhou Han Wang +6 位作者 Ming Huang Jin Chen Jianle Chen Huan Cheng Xingqian Ye Wenjun Wang Donghong Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1806-1824,共19页
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review... Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors. 展开更多
关键词 Bitter contributors Bitter taste receptor Health benefits FRUITS VEGETABLES
下载PDF
Immunomodulation of Proton-activated G Protein-coupled Receptors in Inflammation
5
作者 Min-shan LI Xiang-hong WANG Heng WANG 《Current Medical Science》 SCIE CAS 2024年第3期475-484,共10页
Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammator... Proton-activated G protein-coupled receptors(GPCRs),initially discovered by Ludwig in 2003,are widely distributed in various tissues.These receptors have been found to modulate the immune system in several inflammatory diseases,including inflammatory bowel disease,atopic dermatitis,and asthma.Proton-activated GPCRs belong to the G protein-coupled receptor family and can detect alternations in extracellular pH.This detection triggers downstream signaling pathways within the cells,ultimately influencing the function of immune cells.In this review,we specifically focused on investigating the immune response of proton-activated GPCRs under inflammatory conditions. 展开更多
关键词 proton-activated G protein-coupled receptors INFLAMMATION IMMUNOMODULATION DISEASE
下载PDF
Intricate roles of estrogen and estrogen receptors in digestive system cancers:a systematic review
6
作者 Xiaoning Gan Guanqi Dai +2 位作者 Yonghao Li Lin Xu Guolong Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第10期898-915,共18页
Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potentia... Gender disparities are evident across different types of digestive system cancers,which are typically characterized by a lower incidence and mortality rate in females compared to males.This finding suggests a potential protective role of female steroid hormones,particularly estrogen,in the development of these cancers.Estrogen is a well-known sex hormone that not only regulates the reproductive system but also exerts diverse effects on non-reproductive organs mediated through interactions with estrogen receptors(ERs),including the classic(ERαand ERβ)and non-traditional ERs[G protein-coupled estrogen receptor(GPER)].Recent advances have contributed to our comprehension of the mechanisms underlying ERs in digestive system cancers.In this comprehensive review we summarize the current understanding of the intricate roles played by estrogen and ERs in the major types of digestive system cancers,including hepatocellular,pancreatic,esophageal,gastric,and colorectal carcinoma.Furthermore,we discuss the potential molecular mechanisms underlying ERα,ERβ,and GPER effects,and propose perspectives on innovative therapies and preventive measures targeting the pathways regulated by estrogen and ERs.The roles of estrogen and ERs in digestive system cancers are complicated and depend on the cell type and tissue involved.Additionally,deciphering the intricate roles of estrogen,ERs,and the associated signaling pathways may guide the discovery of novel and tailored therapeutic and preventive strategies for digestive system cancers,eventually improving the care and clinical outcomes for the substantial number of individuals worldwide affected by these malignancies. 展开更多
关键词 ESTROGEN estrogen receptor CANCER digestive system cancers gender disparity
下载PDF
Exploring the vital role of microglial membrane receptors in Alzheimer’s disease pathogenesis: a comprehensive review
7
作者 JUN-FENG ZHAO YI-RAN JIANG +2 位作者 TIAN-LIN GUO YONG-QING JIAO XUN WANG 《BIOCELL》 SCIE 2024年第7期1011-1022,共12页
Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause dea... Neurodegenerative diseases constitute a broad category of diseases caused by the degeneration of the neurons.They are mainly manifested by the gradual loss of neuron structure and function and eventually can cause death or loss of neurons.As the global population ages rapidly,increased people are being diagnosed with neurodegenerative diseases.It has been established that the onset of Alzheimer’s disease(AD)is closely linked with increasing age and its major pathological features include amyloid-beta plaques(Aβ),Tau hyperphosphorylation,Neurofibrillary tangles(NFTs),neuronal death as well as synaptic loss.The involvement of microglia is crucial in the pathogenesis and progression of AD and exhibits a dual role.For instance,in the early stage of AD,microglia surface membrane proteins or receptors can participate in immunophagocytosis,and anti-inflammatory functions and act as a physical barrier after recognizing various ligands such as Aβand NFTs.However,in the later stage of the disease,membrane receptors on the surface of microglia can cause its activation to release a substantial quantity of pro-inflammatory factors.Which can amplify the neuroinflammatory response.The rapid decline of normal immune phagocytosis can result in the continuous accumulation of abnormal proteins,leading to neuronal dysfunction and destruction of the formed physical barrier as well as the neurovascular microenvironment.It can also increase the transformation of microglia from anti-inflammatory phenotype M2 to pro-inflammatory phenotype M1,induce severe neuronal injury or apoptosis,and aggravate the progression of AD.Due to few articles have focused on the AD-related membrane protein receptors on microglia,thus in this paper,we have reviewed several representative microglial membrane proteins or receptors about their specific roles and functions implicated in AD,and expect that there will be more in-depth research and scientific research results in the treatment of AD by targeted regulation of microglia membrane protein receptors in the future. 展开更多
关键词 NEURODEGENERATION Glial cell receptor Alzheimer’s disease
下载PDF
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
8
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
9
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
The Role of Toll-Like Receptors and Nuclear Factor κB p65 Protein in the Pathogenesis of Otitis Media
10
作者 Qingchen He Yongbo Zhu Bi Qiang 《Journal of Biosciences and Medicines》 2024年第10期246-257,共12页
The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becomi... The role of Toll-like receptor 4 (TLR4) and nuclear factor κB p65 (NF-κB p65) proteins in the pathogenesis of otitis media is explored. In recent years, the incidence of otitis media has been rising globally, becoming a significant threat to human health. More and more studies have found that Toll-like receptor 4 (TLR4), as a member of the Toll-like receptor family, can promote the generation of inflammatory factors and is closely related to the body’s immune response and inflammatory response. Nuclear factor-κB p65 (NF-κB p65) is a nuclear transcription factor that can interact with various cytokines, growth factors, and apoptotic factors, participating in processes such as oxidative stress, apoptosis, and inflammation in the body [1]. This article elaborates on the structure, function, and signaling pathways of TLR4 and NF-κB p65 proteins in the pathogenesis of otitis media, aiming to provide more precise targets and better therapeutic efficacy for the diagnosis and treatment of otitis media. The role of inflammation in disease. 展开更多
关键词 Otitis Media Toll-Like receptors Nuclear Factor κB p65 Signaling Pathway
下载PDF
Toll-like receptors 2 polymorphism is associated with psoriasis: A case-control study in the northern Chinese population
11
作者 Siyu Hao Yu Zhang +4 位作者 Anqi Yin Ying Lyu Nannan Tong Jiangtian Tian Yuzhen Li 《Frigid Zone Medicine》 2024年第2期96-101,共6页
Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling... Background:Psoriasis is a disease caused by genetics and immune system dysfunction,affecting the skin and joints.Toll-like receptors(TLRs)play an important role in triggering the innate immune response and controlling adaptive immunity.The role of TLR2 in the progression of psoriasis is not well understood.Methods:A case-control study was conducted on a northern Chinese Han population,consisting of psoriasis patients and healthy control subjects.Genotyping was performed using the tetra-primer amplification refractory mutation system-polymerase chain reaction(ARMS-PCR),and allele and genotype frequencies of four SNPs in TLR2 were analyzed in 270 psoriasis patients and 246 healthy controls.Results:Four TLR2 SNPs(rs11938228,rs4696480,rs3804099,rs5743699)were genotyped and found to be in linkage disequilibrium.The genotype distributions of rs11938228 and rs4696480 in two groups were in Hardy-Weinberg equilibrium and statistically significant except for the overdominance model.The haplotypes ATTC and ATCC were found to be protective against psoriasis.Conclusion:Our study found a correlation between TLR2 genetic variations and the likelihood of psoriasis in northern China. 展开更多
关键词 Toll-like receptors 2 PSORIASIS POLYMORPHISM SUSCEPTIBILITY
下载PDF
N-acetylcysteine and zinc sulphate abate di-2-ethylhexyl phthalate-mediated reproductive dysfunction in rats:Focus on oxidative and sex hormone receptors mechanisms
12
作者 Victor Oghenekparobo Emojevwe Mega Obukohwo Oyovwi +7 位作者 Kayode Ezekiel Adewole Peggy Ejiro Ohwin Adeniran Oluwadamilare Akinola Alexander Obidike Naiho Eze Kingsley Nwangwa Victor Omo-Idonije Motunrayo Lade-Ige Benneth Ben-Azu 《Asian pacific Journal of Reproduction》 CAS 2024年第5期228-240,共13页
Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechan... Objective:To investigate the potential of N-acetylcysteine(NAC)and zinc sulphate(ZnSO_(4))in mitigating reproductive dysfunction caused by di-2-ethylhexyl phthalate(DEHP)in rats and to understand the underlying mechanisms,specifically oxidative stress and sex hormone receptor activity.Methods:Thirty-five male Wistar rats were randomly divided into five equal groups(n=7 per group).Group 1 was administered 0.5 mL of distilled water and served as the control group.Group 2 was given only DEHP(750 mg/kg/day),while group 3,4 and 5 were given DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day),DEHP(750 mg/kg/day)plus ZnSO_(4)(0.5 mg/kg/day),and DEHP(750 mg/kg/day)plus NAC(100 mg/kg/day)as well as ZnSO_(4)(0.5 mg/kg/day),respectively.All treatments lasted for 21 days.Samples were obtained after the rats were sacrificed,and hormones levels in the serum and markers of oxidative stress in the testicles were analyzed using the enzyme-linked immunosorbent assay.The amount of androgen receptors in the testicles was determined by immunohistochemistry,and the susceptibility of testosterone and DEHP to bind to androgen receptor and 5α-reductase was determined by molecular docking studies.Results:DEHP decreased reproductive hormones,testicular antioxidant enzymes,increased malondialdehyde levels,and negatively impacted histology of the pituitary and testes.NAC or ZnSO_(4) treatment showed a marked improvement in testicular antioxidant status and hormone levels,as well as a positive effect on the histology of the pituitary and testes.The combination of both treatments appeared to be more effective.The affinity of DEHP to bind to androgen receptors may lead to disruption of androgen receptor signaling,which can further result in dysfunction of hormones related to androgen.However,NAC is more likely to form stronger binding interactions with follicle stimulating hormone and luteinizing hormone receptors,as well as gonadotropin-releasing hormone receptors,when compared to DEHP.Conclusions:The possibility that NAC and ZnSO_(4) could downregulate DEHP-induced sex hormone changes is suggested by their potential to reduce toxicity. 展开更多
关键词 Di-2-ethylhexyl phthalate TESTOSTERONE Androgen receptor 5Α-REDUCTASE OESTROGEN Luteinizing hormone
下载PDF
P2Y1 receptor in Alzheimer’s disease
13
作者 Shan Luo Yifei Wang Tatsuhiro Hisatsune 《Neural Regeneration Research》 SCIE CAS 2025年第2期440-453,共14页
Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has b... Alzheimer’s disease is the most frequent form of dementia characterized by the deposition of amyloid-beta plaques and neurofibrillary tangles consisting of hyperphosphorylated tau.Targeting amyloid-beta plaques has been a primary direction for developing Alzheimer’s disease treatments in the last decades.However,existing drugs targeting amyloid-beta plaques have not fully yielded the expected results in the clinic,necessitating the exploration of alternative therapeutic strategies.Increasing evidence unravels that astrocyte morphology and function alter in the brain of Alzheimer’s disease patients,with dysregulated astrocytic purinergic receptors,particularly the P2Y1 receptor,all of which constitute the pathophysiology of Alzheimer’s disease.These receptors are not only crucial for maintaining normal astrocyte function but are also highly implicated in neuroinflammation in Alzheimer’s disease.This review delves into recent insights into the association between P2Y1 receptor and Alzheimer’s disease to underscore the potential neuroprotective role of P2Y1 receptor in Alzheimer’s disease by mitigating neuroinflammation,thus offering promising avenues for developing drugs for Alzheimer’s disease and potentially contributing to the development of more effective treatments. 展开更多
关键词 ASTROCYTES NEUROINFLAMMATION P2Y1 receptor purinergic receptor
下载PDF
C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway as a therapeutic target and regulatory mechanism for spinal cord injury
14
作者 Xiangzi Wang Xiaofei Niu +4 位作者 Yingkai Wang Yang Liu Cheng Yang Xuyi Chen Zhongquan Qi 《Neural Regeneration Research》 SCIE CAS 2025年第8期2231-2244,共14页
Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand... Spinal cord injury involves non-reversible damage to the central nervous system that is characterized by limited regenerative capacity and secondary inflammatory damage.The expression of the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis exhibits significant differences before and after injury.Recent studies have revealed that the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis is closely associated with secondary inflammatory responses and the recruitment of immune cells following spinal cord injury,suggesting that this axis is a novel target and regulatory control point for treatment.This review comprehensively examines the therapeutic strategies targeting the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis,along with the regenerative and repair mechanisms linking the axis to spinal cord injury.Additionally,we summarize the upstream and downstream inflammatory signaling pathways associated with spinal cord injury and the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review primarily elaborates on therapeutic strategies that target the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the latest progress of research on antagonistic drugs,along with the approaches used to exploit new therapeutic targets within the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis and the development of targeted drugs.Nevertheless,there are presently no clinical studies relating to spinal cord injury that are focusing on the C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 axis.This review aims to provide new ideas and therapeutic strategies for the future treatment of spinal cord injury. 展开更多
关键词 apoptosis C-C motif chemokine ligand 2/C-C motif chemokine receptor 2 pathway C-C motif chemokine receptor 2 antagonists chemokine ligand 2 chemokine receptor 2 inflammation macrophage microglia spinal cord injury therapeutic method
下载PDF
Hypidone hydrochloride(YL-0919)ameliorates functional deficits after traumatic brain injury in mice by activating the sigma-1 receptor for antioxidation 被引量:1
15
作者 Yafan Bai Hui Ma +5 位作者 Yue Zhang Jinfeng Li Xiaojuan Hou Yixin Yang Guyan Wang Yunfeng Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2325-2336,共12页
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0... Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury. 展开更多
关键词 antidepressant drug blood-brain barrier cognitive function hypidone hydrochloride(YL-0919) neurological function nuclear factor-erythroid 2 related factor 2 oxidative stress sigma-1 receptor superoxide dismutase traumatic brain injury
下载PDF
Novel Role of Calcium-Sensitive Receptors in Chronic Hypoxia-Induced Proliferation of Pulmonary Vein Smooth Muscle Cells
16
作者 Shaoxing Li Jurong Zhang +2 位作者 Zhuandi Lin Zhiming Xiang Gongyong Peng 《Journal of Clinical and Nursing Research》 2024年第7期349-355,共7页
Objective:Vascular remodeling due to chronic hypoxia(CH)occurs not only in the pulmonary arteries but also in the pulmonary veins.Pulmonary vascular remodeling arises from the proliferation of pulmonary vascular myocy... Objective:Vascular remodeling due to chronic hypoxia(CH)occurs not only in the pulmonary arteries but also in the pulmonary veins.Pulmonary vascular remodeling arises from the proliferation of pulmonary vascular myocytes.However,the mechanism by which CH induces the proliferation of pulmonary vein smooth muscle cells(PVSMCs)is unknown.This study aimed to investigate the mechanism by which CH affects the proliferation of PVSMCs.Methods:PVSMCs were isolated from rat distal pulmonary veins and exposed to CH(4%O2,60h),and the expression of the calcium-sensitive receptor(CaSR)was detected by Western blotting and immunofluorescence.MTT assay was used to detect the proliferation viability of the cells,and the changes in the intracellular calcium concentration were detected by laser confocal scanning technique.Results:CaSR expression was present in rat distal PVSMCs,and CaSR protein expression was upregulated under hypoxia.The positive regulator spermine not only enhanced CH-induced CaSR upregulation but also enhanced CH-induced increase in cell viability and calcium ion concentration.The negative CaSR regulator NPS2143 not only attenuated CH-induced CaSR upregulation but also inhibited CH-induced cell viability and calcium ion concentration.Conclusion:CaSR-mediated hyperproliferation is a novel pathogenic mechanism for the development of proliferation in distal PVSMCs under CH conditions. 展开更多
关键词 Hypoxia Calcium-sensitive receptor(CaSR) Pulmonary hypertension Cell proliferation Calcium ions
下载PDF
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function
17
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
下载PDF
Overexpression of low-density lipoprotein receptor prevents neurotoxic polarization of astrocytes via inhibiting NLRP3 inflammasome activation in experimental ischemic stroke
18
作者 Shuai Feng Juanji Li +6 位作者 Tingting Liu Shiqi Huang Xiangliang Chen Shen Liu Junshan Zhou Hongdong Zhao Ye Hong 《Neural Regeneration Research》 SCIE CAS 2025年第2期491-502,共12页
Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit... Neurotoxic astrocytes are a promising therapeutic target for the attenuation of cerebral ischemia/reperfusion injury.Low-density lipoprotein receptor,a classic cholesterol regulatory receptor,has been found to inhibit NLR family pyrin domain containing protein 3(NLRP3)inflammasome activation in neurons following ischemic stroke and to suppress the activation of microglia and astrocytes in individuals with Alzheimer’s disease.However,little is known about the effects of low-density lipoprotein receptor on astrocytic activation in ischemic stroke.To address this issue in the present study,we examined the mechanisms by which low-density lipoprotein receptor regulates astrocytic polarization in ischemic stroke models.First,we examined low-density lipoprotein receptor expression in astrocytes via immunofluorescence staining and western blotting analysis.We observed significant downregulation of low-density lipoprotein receptor following middle cerebral artery occlusion reperfusion and oxygen-glucose deprivation/reoxygenation.Second,we induced the astrocyte-specific overexpression of low-density lipoprotein receptor using astrocyte-specific adeno-associated virus.Low-density lipoprotein receptor overexpression in astrocytes improved neurological outcomes in middle cerebral artery occlusion mice and reversed neurotoxic astrocytes to create a neuroprotective phenotype.Finally,we found that the overexpression of low-density lipoprotein receptor inhibited NLRP3 inflammasome activation in oxygen-glucose deprivation/reoxygenation injured astrocytes and that the addition of nigericin,an NLRP3 agonist,restored the neurotoxic astrocyte phenotype.These findings suggest that low-density lipoprotein receptor could inhibit the NLRP3-meidiated neurotoxic polarization of astrocytes and that increasing low-density lipoprotein receptor in astrocytes might represent a novel strategy for treating cerebral ischemic stroke. 展开更多
关键词 inflammation ischemia/reperfusion injury ischemic stroke low-density lipoprotein receptor neuroprotective astrocytes neurotoxic astrocytes NLRP3 inflammasome POLARIZATION
下载PDF
Pan-TRK positive uterine sarcoma in immunohistochemistry without neurotrophic tyrosine receptor kinase gene fusions:A case report
19
作者 Seungmee Lee Yu-Ra Jeon +2 位作者 Changmin Shin Sun-Young Kwon Sojin Shin 《World Journal of Clinical Cases》 SCIE 2025年第2期39-49,共11页
BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine recept... BACKGROUND The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics,increasingly supported by molecular genetic diagnostics.Data on neurotrophic tyrosine receptor kinase(NTRK)gene fusionpositive uterine sarcoma,potentially aggressive and morphologically similar to fibrosarcoma,are limited due to its recent recognition.Pan-TRK immunohistochemistry(IHC)analysis serves as an effective screening tool with high sensitivity and specificity for NTRK-fusion malignancies.CASE SUMMARY We report a case of a malignant mesenchymal tumor originating from the uterine cervix,which was pan-TRK IHC-positive but lacked NTRK gene fusions,accompanied by a brief literature review.A 55-year-old woman presented to the emergency department with abdominal pain and distension,exhibiting significant ascites and multiple solid pelvic masses.Pelvic examination revealed a tumor encompassing the uterine cervix,extending to the vagina and uterine corpus.A punch biopsy of the cervix indicated NTRK sarcoma with positive immunochemical pan-TRK stain.However,subsequent next generation sequencing revealed no NTRK gene fusion,leading to a diagnosis of poorly differentiated,advanced-stage sarcoma.CONCLUSION The clinical significance of NTRK gene fusion lies in potential treatment with TRK inhibitors for positive sarcomas.Identifying such rare tumors is crucial due to the potential applicability of tropomyosin receptor kinase inhibitor treatment. 展开更多
关键词 Uterine sarcoma Cervical sarcoma Neurotrophic tyrosine receptor kinase gene fusion Next generation sequencing Case report
下载PDF
Reduced mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor contributes to neurodegeneration in a model of spinal and bulbar muscular atrophy pathology
20
作者 Yiyang Qin Wenzhen Zhu +6 位作者 Tingting Guo Yiran Zhang Tingting Xing Peng Yin Shihua Li Xiao-Jiang Li Su Yang 《Neural Regeneration Research》 SCIE CAS 2025年第9期2655-2666,共12页
Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen r... Spinal and bulbar muscular atrophy is a neurodegenerative disease caused by extended CAG trinucleotide repeats in the androgen receptor gene,which encodes a ligand-dependent transcription facto r.The mutant androgen receptor protein,characterized by polyglutamine expansion,is prone to misfolding and forms aggregates in both the nucleus and cytoplasm in the brain in spinal and bulbar muscular atrophy patients.These aggregates alter protein-protein interactions and compromise transcriptional activity.In this study,we reported that in both cultured N2a cells and mouse brain,mutant androgen receptor with polyglutamine expansion causes reduced expression of mesencephalic astrocyte-de rived neurotrophic factor.Overexpressio n of mesencephalic astrocyte-derived neurotrophic factor amelio rated the neurotoxicity of mutant androgen receptor through the inhibition of mutant androgen receptor aggregation.Conversely.knocking down endogenous mesencephalic astrocyte-derived neurotrophic factor in the mouse brain exacerbated neuronal damage and mutant androgen receptor aggregation.Our findings suggest that inhibition of mesencephalic astrocyte-derived neurotrophic factor expression by mutant androgen receptor is a potential mechanism underlying neurodegeneration in spinal and bulbar muscular atrophy. 展开更多
关键词 androgen receptor mesencephalic astrocyte-derived neurotrophic factor mouse model NEURODEGENERATION neuronal loss neurotrophic factor polyglutamine disease protein misfolding spinal and bulbar muscular atrophy transcription factor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部