Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enz...Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enzymatic reaction. In this review, the application of reverse micelles for protein separation and refolding has been briefly summarized and various reverse micellar systems composed of different surfactants, including ionic, non- ionic, mixed, and affinity-based reverse micelles, have been highlighted. It illustrates especially the potential application of the novel affinity-based reverse micelles consisting of biocompatible surfactant coupled with affinity ligands. Moreover, the importance to develop universal affinity-based reverse micelles for protein separation and refolding in the downstream processing of biotechnology has been pointed out.展开更多
Insulin-like growth factor-binding protein 1 (IGFBP-1), a hypoxia-induced protein, is a member of the IGFBP family that regulates vertebrate growth and development. In this study, full-length IGFBP-la cDNA was clone...Insulin-like growth factor-binding protein 1 (IGFBP-1), a hypoxia-induced protein, is a member of the IGFBP family that regulates vertebrate growth and development. In this study, full-length IGFBP-la cDNA was cloned from a hypoxia-sensitive Cyprinidae fish species, the blunt snout bream (Megalobrama arnblycephala). IGFBP-la was expressed in various organs of adult blunt snout bream, including strongly in the liver and weakly in the gonads. Under hypoxia, IGFBP-la mRNA levels increased sharply in the skin, liver, kidney, spleen, intestine and heart tissues of juvenile blunt snout bream, but recovered to normal levels after 24-hour exposure to normal dissolved oxygen. In blunt snout bream embryos, IGFBP-la mRNA was expressed at very low levels at both four and eight hours post-fertilization, and strongly at later stages. Embryonic growth and development rates decreased significantly in embryos injected with IGFBP-la mRNA. The average body length of IGFBP-la-overexpressed embryos was 82.4% of that of the control group, and somite numbers decreased to 85.2%. These findings suggest that hypoxia-induced IGFBP-la may inhibit growth in this species under hypoxic conditions.展开更多
Antifreeze glycoproteins(AFGPs)facilitate the survival of various organisms in the polar region by preventing internal ice accumulation via an adsorption-inhibition mechanism.Inhibition of AFGP antifreeze activity by ...Antifreeze glycoproteins(AFGPs)facilitate the survival of various organisms in the polar region by preventing internal ice accumulation via an adsorption-inhibition mechanism.Inhibition of AFGP antifreeze activity by the borate buffers has been widely acknowledged as the direct experimental evidence supporting the hydroxyl,rather than methyl,binding mechanism.On the other hand,perturbation of borate binding on the AFGP configuration,which might have considerable influence on the binding efficiency of not only the hydroxyl but also the methyl groups,has rarely been quantitatively examined.Herein we studied,using molecular dynamics simulations,the perturbation on the configuration of a solvated AFGP8 protein induced by the binding of one single borate anion.Near the freezing point,this binding not only makes the disaccharide groups adjacent to the borate-binding disaccharide close to each other but also affects the entire AFGP8 conformation.The structural changes induced by the binding of borate on different disaccharide sidechains exhibit clear site-specificities and the effect of borate binding on the structural changes is significantly reduced at higher temperatures.Our study is valuable for further understanding the relationship between the structure and antifreeze activity of these antifreeze glycoproteins.展开更多
Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophy...Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophyll are not the blue light absorbing chromophores involved in the mediation of prehaustoria development to blue light. Norflurazon-bleached dodder segments coiled and formed prehaustoria under blue light. However, norflurazon significantly reduced prehaustoria number (62%) under a mixture of red and far-red light, suggesting that phytochromes could be altered by norflurazon.展开更多
The influence of water on protein conformation was investigated by simulating the molecular dynamics of a model protein lysozyme in different water systems.The lysozyme-water system with TIP3P water model and lysozyme...The influence of water on protein conformation was investigated by simulating the molecular dynamics of a model protein lysozyme in different water systems.The lysozyme-water system with TIP3P water model and lysozyme-water cluster system with six-ring water model were evaluated.In addition,the radial distribution function of solvent around lysozyme was calculated.It is found that the distribution of water molecules around lysozyme is similar to that of water clusters.The analyses of dihedral angles and disulfide bonds of lysozyme show that the conformation of lysozyme is severely damaged in the lysozyme-water cluster system compared with that in the lysozyme-water system.This difference can be attributed to the formation of larger number of intermolecular hydrogen bonds between lysozyme and water cluster.It is in agreement with the analysis that water clusters can change the degree of denaturation in the process of heat denaturation of lysozyme.展开更多
Multidrug resistance-associated proteins (MRPs) can effiux structurally diverse drugs, drug conjugates, drug metabolites, as well as other small molecules out of the cells, and this is the main cause of producing mu...Multidrug resistance-associated proteins (MRPs) can effiux structurally diverse drugs, drug conjugates, drug metabolites, as well as other small molecules out of the cells, and this is the main cause of producing multidrug resistance (MDR) of some anticaneer drugs. Therefore, it is crucial to uncover the molecular features of MRPs substrates in developing anti-MDR cancer therapy. In the present study, common feature pharmacophore models were developed by employing CATALYST Pharmacophore Modeling and Analysis tools using substrates of MRPs, including MRP1, -2, -3, -4, -5, -6, -8 and MRPs family, respectively. The models were validated using independent decoy sets generated in DUD-E, and the ones with best A UC (area under the curve) scores were chosen to predict endogenous substrates by screening the Human Metabolome Database (HMDB). A number of molecules obtained by pharmacophore screening have been validated in the literatures. By comparing physical properties (ALOGP, Molecular_PolarSurfaceArea, Molecular_Volume, Molecular_Weight, Num H Acceptors, Num H Donors) and scaffold features of the screened candidates with the known substrates, we found that: 1) The two sets have consistent ALOGP, Molecule_Volume and Molecule_Weight distribution trend; 2) Substrates of MRP1 have a better lipophilicity than the other subtypes, which is consistent with the two hydrophobic centers on the MRP1 pharmacophore; 3) In the aspect of the scaffold structures, they have the identical or similar backbone fragments.展开更多
基金Supported by the National Natural Science Foundation of China (20676098).
文摘Reverse micelles bring mild and effective microenvironments in organic solvent that contain bitmolecules, which have attracted immense attention for application in the isolation of proteins, protein refolding, and enzymatic reaction. In this review, the application of reverse micelles for protein separation and refolding has been briefly summarized and various reverse micellar systems composed of different surfactants, including ionic, non- ionic, mixed, and affinity-based reverse micelles, have been highlighted. It illustrates especially the potential application of the novel affinity-based reverse micelles consisting of biocompatible surfactant coupled with affinity ligands. Moreover, the importance to develop universal affinity-based reverse micelles for protein separation and refolding in the downstream processing of biotechnology has been pointed out.
基金supported by grants from the Key Technologies Research and Development Program of China(2012BAD26B02)National Science Foundation of China(31272633+2 种基金31201760)Special Funding from the Ministry of Agriculture of China(201203081,201203086)Shanghai University Knowledge Service Platform(ZF1206)
文摘Insulin-like growth factor-binding protein 1 (IGFBP-1), a hypoxia-induced protein, is a member of the IGFBP family that regulates vertebrate growth and development. In this study, full-length IGFBP-la cDNA was cloned from a hypoxia-sensitive Cyprinidae fish species, the blunt snout bream (Megalobrama arnblycephala). IGFBP-la was expressed in various organs of adult blunt snout bream, including strongly in the liver and weakly in the gonads. Under hypoxia, IGFBP-la mRNA levels increased sharply in the skin, liver, kidney, spleen, intestine and heart tissues of juvenile blunt snout bream, but recovered to normal levels after 24-hour exposure to normal dissolved oxygen. In blunt snout bream embryos, IGFBP-la mRNA was expressed at very low levels at both four and eight hours post-fertilization, and strongly at later stages. Embryonic growth and development rates decreased significantly in embryos injected with IGFBP-la mRNA. The average body length of IGFBP-la-overexpressed embryos was 82.4% of that of the control group, and somite numbers decreased to 85.2%. These findings suggest that hypoxia-induced IGFBP-la may inhibit growth in this species under hypoxic conditions.
基金support from the National Natural Science Foundation of China(No.21873101)is acknowledged。
文摘Antifreeze glycoproteins(AFGPs)facilitate the survival of various organisms in the polar region by preventing internal ice accumulation via an adsorption-inhibition mechanism.Inhibition of AFGP antifreeze activity by the borate buffers has been widely acknowledged as the direct experimental evidence supporting the hydroxyl,rather than methyl,binding mechanism.On the other hand,perturbation of borate binding on the AFGP configuration,which might have considerable influence on the binding efficiency of not only the hydroxyl but also the methyl groups,has rarely been quantitatively examined.Herein we studied,using molecular dynamics simulations,the perturbation on the configuration of a solvated AFGP8 protein induced by the binding of one single borate anion.Near the freezing point,this binding not only makes the disaccharide groups adjacent to the borate-binding disaccharide close to each other but also affects the entire AFGP8 conformation.The structural changes induced by the binding of borate on different disaccharide sidechains exhibit clear site-specificities and the effect of borate binding on the structural changes is significantly reduced at higher temperatures.Our study is valuable for further understanding the relationship between the structure and antifreeze activity of these antifreeze glycoproteins.
文摘Previous studies demonstrated that cryptochromes are involved in blue light-induced coiling and prehaustoria development in young de-etiolated dodder seedlings. In this study, we suggest that carotenoids and chlorophyll are not the blue light absorbing chromophores involved in the mediation of prehaustoria development to blue light. Norflurazon-bleached dodder segments coiled and formed prehaustoria under blue light. However, norflurazon significantly reduced prehaustoria number (62%) under a mixture of red and far-red light, suggesting that phytochromes could be altered by norflurazon.
基金Supported by National Natural Science Foundation of China (No. 20676094)
文摘The influence of water on protein conformation was investigated by simulating the molecular dynamics of a model protein lysozyme in different water systems.The lysozyme-water system with TIP3P water model and lysozyme-water cluster system with six-ring water model were evaluated.In addition,the radial distribution function of solvent around lysozyme was calculated.It is found that the distribution of water molecules around lysozyme is similar to that of water clusters.The analyses of dihedral angles and disulfide bonds of lysozyme show that the conformation of lysozyme is severely damaged in the lysozyme-water cluster system compared with that in the lysozyme-water system.This difference can be attributed to the formation of larger number of intermolecular hydrogen bonds between lysozyme and water cluster.It is in agreement with the analysis that water clusters can change the degree of denaturation in the process of heat denaturation of lysozyme.
基金The National Natural Science Foundation of China(Grant No.21272017 and 21572010)
文摘Multidrug resistance-associated proteins (MRPs) can effiux structurally diverse drugs, drug conjugates, drug metabolites, as well as other small molecules out of the cells, and this is the main cause of producing multidrug resistance (MDR) of some anticaneer drugs. Therefore, it is crucial to uncover the molecular features of MRPs substrates in developing anti-MDR cancer therapy. In the present study, common feature pharmacophore models were developed by employing CATALYST Pharmacophore Modeling and Analysis tools using substrates of MRPs, including MRP1, -2, -3, -4, -5, -6, -8 and MRPs family, respectively. The models were validated using independent decoy sets generated in DUD-E, and the ones with best A UC (area under the curve) scores were chosen to predict endogenous substrates by screening the Human Metabolome Database (HMDB). A number of molecules obtained by pharmacophore screening have been validated in the literatures. By comparing physical properties (ALOGP, Molecular_PolarSurfaceArea, Molecular_Volume, Molecular_Weight, Num H Acceptors, Num H Donors) and scaffold features of the screened candidates with the known substrates, we found that: 1) The two sets have consistent ALOGP, Molecule_Volume and Molecule_Weight distribution trend; 2) Substrates of MRP1 have a better lipophilicity than the other subtypes, which is consistent with the two hydrophobic centers on the MRP1 pharmacophore; 3) In the aspect of the scaffold structures, they have the identical or similar backbone fragments.